166
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli

, & ORCID Icon
Pages 749-759 | Published online: 09 Mar 2020

References

  • Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66(5):551–559. doi:10.1099/jmm.0.00047528504927
  • Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6(9):a025320. doi:10.1101/cshperspect.a02532027449972
  • Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infect Chemother. 2014;46(4):226–238. doi:10.3947/ic.2014.46.4.22625566402
  • Xiong X, Bromley EH, Oelschlaeger P, Woolfson DN, Spencer J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a gram-negative bacterium. Nucleic Acids Res. 2011;39(9):3917–3927. doi:10.1093/nar/gkq129621227918
  • Yassine I, Rafei R, Osman M, Mallat H, Dabboussi F, Hamze M. Plasmid-mediated quinolone resistance: mechanisms, detection, and epidemiology in the Arab countries. Infect Genet Evol. 2019;76:104020. doi:10.1016/j.meegid.2019.10402031493557
  • Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12–31. doi:10.1111/nyas.1283026190223
  • Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–1574. doi:10.1021/bi500056424576155
  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438–445. doi:10.1016/j.tim.2014.04.00724842194
  • Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob Agents Chemother. 2008;52(2):385–392. doi:10.1128/aac.01617-0617724149
  • Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9(11):981–998. doi:10.2174/15680260978963094719747119
  • Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol. 2009;2(1):40–61. doi:10.1111/j.1751-7915.2008.00063.x21261881
  • Gutierrez A, Stokes JM, Matic I. Our evolving understanding of the mechanism of quinolones. Antibiotics (Basel). 2018;7(2):E32. doi:10.3390/antibiotics702003229642475
  • Aldred KJ, McPherson SA, Wang P, et al. Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry. 2012;51(1):370–381. doi:10.1021/bi201390522126453
  • Aldred KJ, McPherson SA, CLJr T, Kerns RJ, Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res. 2013;41(8):4628–4639. doi:10.1093/nar/gkt12423460203
  • Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51(5):1109–1117. doi:10.1093/jac/dkg22212697644
  • Ruiz J. Transferable mechanisms of quinolone resistance from 1998 onward. Clin Microbiol Rev. 2019;32(4):e00007–e00019. doi:10.1128/CMR.00007-1931413045
  • Wohlkonig A, Chan PF, Fosberry AP, et al. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol. 2010;17(9):1152–1153. doi:10.1038/nsmb.189220802486
  • Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382–402. doi:10.1128/CMR.19.2.382-402.200616614254
  • Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother. 2000;44(9):2233–2241. doi:10.1128/aac.44.9.2233-2241.200010952561
  • Sáenz Y, Ruiz J, Zarazaga M, Teixidó M, Torres C, Vila J. Effect of the efflux pump inhibitor Phe-Arg-beta-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother. 2004;53(3):544–545. doi:10.1093/jac/dkh11714762057
  • Guan X, Xue X, Liu Y, et al. Plasmid-mediated quinolone resistance–current knowledge and future perspectives. J Int Med Res. 2013;41(1):20–30. doi:10.1177/030006051347596523569126
  • Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr. 2014;2(5):1–24. doi:10.1128/microbiolspec.PLAS-0006-2013
  • Martínez-Martínez L, Eliecer Cano M, Manuel Rodríguez-Martínez J, Calvo J, Pascual A. Plasmid-mediated quinolone resistance. Expert Rev Anti Infect Ther. 2008;6(5):685–711. doi:10.1586/14787210.6.5.685.18847406
  • Poirel L, Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol. 2012;3:24. doi:10.3389/fmicb.2012.0002422347217
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629–640. doi:10.1016/S1473-3099(06)70599-017008172
  • Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat. 2016;29:13–29. doi:10.1016/j.drup.2016.09.00127912841
  • Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–689. doi:10.1128/CMR.00016-0919822894
  • Yanat B, Rodríguez-Martínez JM, Touati A. Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries. Eur J Clin Microbiol Infect Dis. 2017;36(3):421–435. doi:10.1007/s10096-016-2847-x27889879
  • Oviaño M, Rodríguez-Martínez JM, Pascual Á, Bou G. Rapid detection of the plasmid-mediated quinolone resistance determinant AAC(6ʹ)-Ib-cr in Enterobacteriaceae by MALDI-TOF MS analysis. J Antimicrob Chemother. 2017;72(4):1074–1080. doi:10.1093/jac/dkw55228065892
  • Abd El-Aziz NK, Gharib AA. Coexistence of plasmid-mediated quinolone resistance determinants and AmpC-Beta-Lactamases in Escherichia coli strains in Egypt. Cell Mol Biol (Noisy-Le-Grand). 2015;61(5):29–35. doi:10.14715/cmb/2015.61.5.526475385
  • Briales A, Rodríguez-Martínez JM, Velasco C, et al. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6ʹ)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain. Int J Antimicrob Agents. 2012;39(5):431–434. doi:10.1016/j.ijantimicag.2011.12.00922365240
  • Machuca J, Agüero J, Miró E, et al. Prevalence of quinolone resistance mechanisms in Enterobacteriaceae producing acquired AmpC β-lactamases and/or carbapenemases in Spain. Enferm Infecc Microbiol Clin. 2017;35(8):487–492. doi:10.1016/j.eimc.2016.05.00627345951
  • Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother. 2003;47(7):2242–2248. doi:10.1128/aac.47.7.2242-224812821475
  • Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005;56(3):463–469. doi:10.1093/jac/dki24516020539
  • Guillard T, Cambau E, Chau F, Massias L, de Champs C, Fantin B. Ciprofloxacin treatment failure in a murine model of pyelonephritis due to an AAC(6ʹ)-Ib-cr-producing Escherichia coli strain susceptible to ciprofloxacin in vitro. Antimicrob Agents Chemother. 2013;57(12):5830–5835. doi:10.1128/AAC.01489-1324018262
  • Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–88. doi:10.1038/nm134716369542
  • Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52(10):3801–3804. doi:10.1128/AAC.00638-0818644958
  • Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(8):3582–3584. doi:10.1128/AAC.01574-0819528276
  • Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51(9):3354–3360. doi:10.1128/AAC.00339-0717548499
  • Chávez-Jacobo VM, Hernández-Ramírez KC, Romo-Rodríguez P, et al. CrpP is a novel ciprofloxacin-modifying enzyme encoded by the Pseudomonas aeruginosa pUM505 plasmid. Antimicrob Agents Chemother. 2018;62(6):e02629–e026217. doi:10.1128/AAC.02629-1729581123
  • Chávez-Jacobo VM, Hernández-Ramírez KC, Silva-Sánchez J, et al. Prevalence of the crpP gene conferring decreased ciprofloxacin susceptibility in enterobacterial clinical isolates from Mexican hospitals. J Antimicrob Chemother. 2019;74(5):1253–1259. doi:10.1093/jac/dky56230753471
  • Tavío MM, Jacoby GA, Hooper DC. QnrS1 structure-activity relationships. J Antimicrob Chemother. 2014;69(8):2102–2109. doi:10.1093/jac/dku10224729602
  • Jacoby GA, Corcoran MA, Mills DM, Griffin CM, Hooper DC. Mutational analysis of quinolone resistance protein QnrB1. Antimicrob Agents Chemother. 2013;57(11):5733–5736. doi:10.1128/AAC.01533-1323979738
  • Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005;49(1):118–125. doi:10.1128/AAC.49.1.118-125.200515616284
  • Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49(7):3050–3052. doi:10.1128/AAC.49.7.3050-3052.200515980397
  • Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem. 2011;286(28):25265–25273. doi:10.1074/jbc.M111.22693621597116
  • Hata M, Suzuki M, Matsumoto M, et al. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother. 2005;49(2):801–803. doi:10.1128/AAC.49.2.801-803.200515673773
  • Pu XY, Pan JC, Wang HQ, Zhang W, Huang ZC, Gu YM. Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. J Antimicrob Chemother. 2009;63(5):917–920. doi:10.1093/jac/dkp08719297378
  • Pu XY, Pan JC, Gu YM, Zheng W, Li J, Yu H. Complete sequences and characterization of two novel plasmids carrying aac(6ʹ)-Ib-cr and qnrS gene in Shigella flexneri. Microb Drug Resist. 2016;22(2):115–122. doi:10.1089/mdr.2015.008226469217
  • Ho YJ, Lu JW, Huang YL, Lai ZZ. Palmatine inhibits Zika virus infection by disrupting virus binding, entry, and stability. Biochem Biophys Res Commun. 2019;518(4):732–738. doi:10.1016/j.bbrc.2019.08.12031472967
  • Long J, Song J, Zhong L, Liao Y, Liu L, Li X. Palmatine: a review of its pharmacology, toxicity and pharmacokinetics. Biochimie. 2019;162:176–184. doi:10.1016/j.biochi.2019.04.00831051209
  • Clinical and Laboratory Standards Institute (CLSI). Methods for dilution of antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-10th edition. CLSI Document M07-A10. Wayne (PA): Clinical and Laboratory Standards Institute; 2015.
  • Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 25th informational supplement. CLSI Document M100-S25. Wayne (PA): Clinical and Laboratory Standards Institute; 2015
  • Teng Z, Guo Y, Liu X, et al. Theaflavin-3,3´-digallate increases the antibacterial activity of β-lactam antibiotics by inhibiting metallo-β-lactamase activity. J Cell Mol Med. 2019;23(10):6955–6964. doi:10.1111/jcmm.1458031392792
  • Zhou Y, Wang J, Guo Y, et al. Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive Enterobacteriaceae. J Infect. 2019;78(5):364–372. doi:10.1016/j.jinf.2019.03.00430851289
  • Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017;7(10):2732–2745. doi:10.7150/thno.1875228819459
  • Ma Z, Qu B, Zhong S, Yao L, Gao Z, Zhang S. Subtle difference generates big dissimilarity: comparison of enzymatic activity in KL1 and KL2 domains of lancelet klotho. Mar Biotechnol (NY). 2019;21(4):448–462. doi:10.1007/s10126-019-09891-031053952
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–134. doi:10.1093/protein/8.2.1277630882
  • Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6–7):298–304. doi:10.1016/j.ijmm.2013.02.00123499304
  • Flach CF, Boulund F, Kristiansson E, Larsson DJ. Functional verification of computationally predicted qnr genes. Ann Clin Microbiol Antimicrob. 2013;12:34. doi:10.1186/1476-0711-12-3424257207
  • Machuca J, Briales A, Labrador G, et al. Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother. 2014;69(12):3203–3215. doi:10.1093/jac/dku30825139837
  • Paiva MC, Reis MP, Costa PS, et al. Identification of new bacteria harboring qnrS and aac(6ʹ)-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. Water Res. 2017;110:27–37. doi:10.1016/j.watres.2016.11.05627984803
  • Pu XY, Gu Y, Li J, Song SJ, Lu Z. Characterization of the complete sequences and stability of plasmids carrying the genes aac(6ʹ)-Ib-cr or qnrS in Shigella flexneri in the Hangzhou area of China. World J Microbiol Biotechnol. 2018;34(6):72. doi:10.1007/s11274-018-2454-329777316
  • Liu S, Zhou Y, Niu X, et al. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discov. 2018;4:28. doi:10.1038/s41420-018-0029-6
  • Wang L, Li B, Si X, et al. Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J Cell Mol Med. 2019;23(7):4808–4818. doi:10.1111/jcmm.1437131094081
  • Zhou Y, Liu S, Wang T, et al. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B. Antimicrob Agents Chemother. 2018;62(4):e02146–e021417. doi:10.1128/AAC.02146-1729339386
  • Maurice F, Broutin I, Podglajen I, Benas P, Collatz E, Dardel F. Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep. 2008;9(4):344–349. doi:10.1038/embor.2008.918292754
  • Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6ʹ)-Ib and its bifunctional, fluoroquinolone-active AAC(6ʹ)-Ib-cr variant. Biochemistry. 2008;47(37):9825–9835. doi:10.1021/bi800664x18710261