270
Views
22
CrossRef citations to date
0
Altmetric
Original Research

The First Egyptian Report Showing the Co-Existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 Among Carbapenem-Resistant K. pneumoniae Clinical Isolates Genotyped by BOX-PCR

ORCID Icon, , , & ORCID Icon
Pages 1237-1250 | Published online: 29 Apr 2020

References

  • Codjoe FS, Donkor ES. Carbapenem resistance: review. Med Sci. 2018;6(1). doi:10.3390/medsci6010001
  • Neuner EA, Yeh J-Y, Hall GS, et al. Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn Microbiol Infect Dis. 2011;69(4):357–362. doi:10.1016/j.diagmicrobio.2010.10.01321396529
  • Huttner B, Jones M, Rubin MA, Neuhauser MM, Gundlapalli A, Samore M. Drugs of last resort? The use of polymyxins and tigecycline at US Veterans Affairs medical centers, 2005–2010. PLoS One. 2012;7(5):e36649. doi:10.1371/journal.pone.003664922615789
  • El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary care hospital in Taif, Saudi Arabia. Infect Drug Resist. 2019;12:3113–3124. doi:10.2147/IDR.S20669131632100
  • Wolfensberger A, Kuster SP, Marchesi M, Zbinden R, Hombach M. The effect of varying multidrug-resistance (MDR) definitions on rates of MDR Gram-negative rods. Antimicrob Resist Infect Control. 2019;8(1). doi:10.1186/s13756-019-0614-3
  • Pattnaik D, Panda SS, Singh N, Sahoo S, Mohapatra I, Jena J. Multidrug resistant, extensively drug resistant and pan drug resistant Gram-negative bacteria at a tertiary care center in Bhubaneswar. Int J Community Med Public Heal. 2019;6(2):567–572. doi:10.18203/2394-6040.ijcmph20190170
  • Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21. doi:10.1177/204993611562170926862399
  • Naas T, Dortet L,I, Iorga B. Structural and functional aspects of class A carbapenemases. Curr Drug Targets. 2016;17(9):1006–1028. doi:10.2174/138945011766616031014450126960341
  • Brouwer MS, Tehrani KH, Rapallini M, et al. Novel carbapenemases FLC-1 and IMI-2 encoded by an Enterobacter cloaca complex isolated from food products. Antimicrob Agents Chemother. 2019;63(6):e02338–02318. doi:10.1128/AAC.02338-1830910900
  • Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D β- lactamases: are they all carbapenemases? Antimicrob Agents Chemother. 2014;58(4):2119–2125. doi:10.1128/AAC.02522-1324468778
  • Antunes NT, Fisher JF. Acquired class D β-lactamases. Antibiotics. 2014;3(3):398–434. doi:10.3390/antibiotics303039827025753
  • Abbas HA, Kadry AA, Shaker GH, Goda RM. Impact of specific inhibitors on metallo-β- carbapenemases detected in Escherichia coli and Klebsiella pneumoniae isolates. Microb Pathog. 2019;132:266–274. doi:10.1016/j.micpath.2019.05.02231096002
  • Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem- EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40(10):3798–3801. doi:10.1128/jcm.40.10.3798-3801.200212354884
  • Van Belkum A, Hermans PW. BOX PCR fingerprinting for molecular typing of Streptococcus pneumoniae In: Antibio Resist. Springer; 2001:159–168. doi:10.1385/1-59259-077-2:159
  • Brusetti L, Malkhazova I, Gtari M, et al. Fluorescent-BOX-PCR for resolving bacterial genetic diversity, endemism and biogeography. BMC Microbiol. 2008;8(1):220. doi:10.1186/1471-2180-8-22019077307
  • El-Badawy MF, Tawakol WM, El-Far SW, et al. Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among klebsiella pneumoniae clinical isolates recovered from Egyptian patients. Inter J Microbiol. 2017;2017:1–12. doi:10.1155/2017/8050432
  • Vandepitte J, Verhaegen J, Engbaek K, et al. Basic Laboratory Procedures in Clinical Bacteriology. WHO; 2003.
  • Qaiyumi S. Macro-and microdilution methods of antimicrobial susceptibility testing In: Antimicrobial Susceptibility Testing Protocols. Taylor & Francis; 2007:75–79.
  • Patel J, Cockerill F, Alder J, et al. National Committee for Clinical Laboratory Standards Performance Standards for Antimicrobial Susceptibility Testing. 2014.
  • Othman HB, Halim RMA, Abdul-Wahab HEE-A, Atta HA, Shaaban O. Pseudomonas aeruginosa-modified Hodge test (PAE-MHT) and ChromID Carba agar for detection of carbapenemase producing Pseudomonas aeruginosa recovered from clinical specimens. Macedo J Med Sci. 2018;6(12):2283–2289. doi:10.3889/oamjms.2018.414
  • Campana EH, Chuster SG, da Silva IR, et al. modified Carba NP test for the detection of carbapenemase production in Gram-negative rods: optimized handling of multiple samples. Braz J Microbiol. 2017;48(2):242–245. doi:10.1016/j.bjm.2016.09.01527998674
  • Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN. Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram- negative bacteria. J Lab Physician. 2017;9(4):303–307. doi:10.4103/JLP.JLP_138_16
  • Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J Lab Physician. 2017;9(4):249–253. doi:10.4103/JLP.JLP_118_16
  • Van Dijk K, Voets G, Scharringa J, et al. A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect. 2014;20(4):345–349. doi:10.1111/1469-0691.1232223927659
  • Yang Y, Rasmussen BA, Shlaes DM. Class A β-lactamases-enzyme-inhibitor interactions and resistance. Pharma& Therap. 1999;83(2):141–151. doi:doi.10.1016/S0163-7258(99)00027-3
  • Stojanoski V, Chow D-C, Fryszczyn B, et al. Structural basis for different substrate profiles of two closely related class D β-lactamases and their inhibition by halogens. Biochemi. 2015;54(21):3370–3380. doi:10.1021/acs.biochem.5b00298
  • Dobrzaniecka K, Młynarczyk A, Szymanek-Majchrzak K, Młynarczyk G. Comparison of phenotypic methods for the detection of beta-lactamases MBL in strains from the Enterobacteriaceae family and non-fermentative bacilli isolated from clinical specimens. Med Dosw Mikrobiol. 2014;66(3–4):177–184.25804071
  • Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117–122.
  • El-Badawy MF, Tawakol WM, Maghrabi IA, Mansy MS, Shohayeb MM, Ashour MS. Iodometric and molecular detection of ESBL production among clinical isolates of E. coli fingerprinted by ERIC-PCR: the first Egyptian report declares the emergence of E. coli O25b-ST131clone harboring blaGES. Microbiol Drug Resist. 2017;23(6):703–717. doi:10.1089/mdr.2016.0181
  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–1191. doi:10.1093/bioinformatics/btp03319151095
  • Moemen D, Masallat DT. Prevalence and characterization of carbapenem-resistant Klebsiella pneumoniae isolated from intensive care units of Mansoura university hospitals. Egypt J Bas Appli Sci. 2017;4(1):37–41. doi:10.1016/j.ejbas.2017.01.001
  • Sheu -C-C, Chang Y-T, Lin S-Y, et al. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10(80). doi:10.3389/fmicb.2019.00080
  • Lledo W, Hernandez M, Lopez E, et al. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep CDC. 2009;58(10):256–260.
  • Wiener-Well Y, Rudensky B, Yinnon A, et al. Carriage rate of carbapenem-resistant Klebsiella pneumoniae in hospitalized patients during a national outbreak. J Hosp Infect. 2010;74(4):344–349. doi:10.1016/j.jhin.2009.07.02219783067
  • Metwally L, Gomaa N, Attallah M, Kamel N. High prevalence of Klebsiella pneumoniae carbapenemase-mediated resistance in K. pneumoniae isolates from Egypt. East Mediterr Health J. 2013;19(11):947–952. doi:10.26719/2013.19.11.94724673086
  • Moghadampour M, Rezaei A, Faghri J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol Immunol Hung. 2018;65(3):335–344. doi:10.1556/030.65.2018.03430024268
  • Bi W, Liu H, Dunstan RA, et al. Extensively drug resistant Klebsiella pneumoniae causing nosocomial bloodstream infections in China: molecular investigation of antibiotic resistance determinants, informing therapy, and clinical outcomes. Front Microbiol. 2017;8:1230. doi:10.3389/fmicb.2017.0123028713357
  • Patel JB, Weinstein MP, Eliopoulos GM, et al. Carba NP Test for Suspected Carbapenemase Production in Enterobacteriaceae, Pseudomonas Aeruginosa, and Acinetobacter Spp. Clinical and Laboratory Standards Institute (CLSI). CLSI Supplement M100. 27th ed. 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA: Clinical and Laboratory Standards Institute; 2017.
  • Morey KE, Vega R, Cassidy PM, et al. Evaluation of the Carba NP test in Oregon, 2013. Antimicrob Agents Chemother. 2017;61(1):e03005–03015. doi:10.1128/AAC.03005-1527795386
  • AlTamimi M, AlSalamah A, AlKhulaifi M, AlAjlan H. Comparison of phenotypic and PCR methods for detection of carbapenemases production by Enterobacteriaceae. Saudi J Biol Sci. 2017;24(1):155–161. doi:10.1016/j.sjbs.2016.07.00428053586
  • Bayramoğlu G, Ulucam G, Gençoğlu ÇÖ, Kılıç A, Aydın F. Comparison of the modified Hodge test and the Carba NP test for detection of carbapenemases in Enterobacteriaceae isolates. Mikrobiyol Bu. 2016;50(1):1–10. doi:10.5578/mb.10861
  • Pournaras S, Poulou A, Tsakris A. Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. J Antimicrob Chemother. 2010;65(7):1319–1321. doi:10.1093/jac/dkq12420395214
  • Kahraman EP, Toptan H, Otlu B, Köroğlu M, Altındiş M. Investigation of blaOXA-48-like genes in carbapenemase producing Klebsiella spp. isolates. Mikrobiyol Bul. 2019;53(2):134–143. doi:10.5578/mb.6791431130118
  • Al-Zahrani IA, Alasiri BA. The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med J. 2018;39(1):23–30. doi:10.15537/smj.2018.1.2109429332105
  • Shankar C, Mathur P, Venkatesan M, et al. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: multiple and varied mobile genetic elements. BMC Microbiol. 2019;19(1):137. doi:10.1186/s12866-019-1513-831234800
  • Nahid F, Zahra R, Sandegren L. A blaOXA-181harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. PLoS One. 2017;12(12):e0189438. doi:10.1371/journal.Pone29220374
  • Satter S, Mahbub H, Shamsuzzaman S. OXA-181-an emerging threat in Bangladesh. J Mole Stud Medici Res. 3(01):128–134. doi:10.18801/jmsmr.030118.15
  • Zhu C, Liyanapathirana V, Li C, et al. Characterizing mobilized virulence factors and multidrug resistance genes in carbapenemase-producing Klebsiella pneumoniae in a Sri Lankan hospital. Front Microbiol. 2018;9:2044. doi:10.3389/fmicb.2018.0204430233529
  • Uwaezuoke NS, Kieffer N, Iregbu KC, Nordmann P. First report of OXA-181 and NDM- 1 from a clinical Klebsiella pneumoniae isolate from Nigeria. Int J Infect Dis. 2017;61:1–2. doi:10.1016/j.ijid.2017.05.00428526566
  • Lopes BS, Al-Agamy MH, Ismail MA, et al. The transferability of blaOXA-23 gene in multidrug-resistant Acinetobacter baumannii isolates from Saudi Arabia and Egypt. Int J Med Microbiol. 2015;305(6):581–588. doi:10.1016/j.ijmm.2015.07.00726253451
  • Al-Agamy MH, Khalaf NG, Tawfick MM, Shibl AM, El Kholy A. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int J Infect Dis. 2014;22:49–54. doi:10.1016/j.ijid.2013.12.00424607428
  • El Bannah AMS, Nawar NN, Hassan RMM, Salem STB. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in a tertiary care hospital in Egypt: clonal spread of blaOXA-23. Microb Drug Resist. 2018;24(3):269–277. doi:10.1089/mdr.2017.005728783427
  • Yousfi K, Touati A, Lefebvre B, et al. Characterization of multidrug-resistant Gram-negative bacilli isolated from hospitals effluents: first report of a blaOXA-48-like in Klebsiella oxytoca, Algeria. Braz J Microbiol. 2019;50(1):175–183. doi:10.1007/s42770-018-0010-930637660
  • Evans BA, Amyes SG. OXA-type β-lactamases. Clin Microbiol Rev. 2014;27(2):63–72. doi:10.1128/CMR.00117-13
  • Chen TL, Lee YT, Kuo SC, et al. Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob Agents Chemother. 2010;54(11):4575–4581. doi:10.1128/AAC.00764-1020713680
  • Budak S, Aktaş Z, Oncul O, et al. Detection of OXA-51 Carbapenemase Gene in Klebsiella pneumoniae: a Case Report and a New Dimension on Carbapenemase Resistance. J Mol Genet Med. 2013;7:1747–0862.1000. doi:10.4172/1747-0862.1000063
  • Lee CR, Lee JH, Park KS, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895. doi:10.3389/fmicb.2016.008927379038