119
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Complete-Genome Sequencing and Comparative Genomic Characterization of an IMP-4 Producing Citrobacter freundii Isolate from Patient with Diarrhea

, , , , , , ORCID Icon, & show all
Pages 1057-1065 | Published online: 14 Apr 2020

References

  • Chi X, Berglund B, Zou H, et al. Characterization of clinically relevant strains of extended-spectrum β-lactamase-producing klebsiella pneumoniae occurring in environmental sources in a rural area of China by using whole-genome sequencing. Front Microbiol. 2019;10.
  • Pang F, Jia XQ, Song ZZ, et al. Characteristics and management of enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in a tertiary hospital. Afr Health Sci. 2016;16(1):153–161. doi:10.4314/ahs.v16i1.2127358627
  • Lee JH, Bae IK, Lee CH, Jeong S. Molecular characteristics of first IMP-4-producing enterobacter cloacae sequence type 74 and 194 in Korea. Front Microbiol. 2017;8:2343. doi:10.3389/fmicb.2017.0234329326660
  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–151. doi:10.1128/AAC.35.1.1471901695
  • Chu YW, Afzal-Shah M, Houang ET, et al. IMP-4, a novel metallo-beta-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother. 2001;45(3):710–714. doi:10.1128/AAC.45.3.710-714.200111181348
  • Sidjabat HE, Townell N, Nimmo GR, et al. Dominance of IMP-4-producing enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob Agents Chemother. 2015;59(7):4059–4066. doi:10.1128/AAC.04378-1425918153
  • Liu LH, Wang NY, Wu AY, Lin CC, Lee CM, Liu CP. Citrobacter freundii bacteremia: risk factors of mortality and prevalence of resistance genes. J Microbiol Immunol Infect. 2018;51(4):565–572. doi:10.1016/j.jmii.2016.08.01628711438
  • Pepperell C, Kus JV, Gardam MA, Humar A, Burrows LL. Low-virulence citrobacter species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother. 2002;46(11):3555–3560. doi:10.1128/AAC.46.11.3555-3560.200212384364
  • Mohanty S, Singhal R, Sood S, Dhawan B, Kapil A, Das BK. Citrobacter infections in a tertiary care hospital in Northern India. J Infect. 2007;54(1):58–64. doi:10.1016/j.jinf.2006.01.01516815552
  • Dolejska M, Papagiannitsis CC, Medvecky M, Davidova-Gerzova L, Valcek A. Characterization of the complete nucleotide sequences of IMP-4-encoding plasmids, belonging to diverse inc families, recovered from enterobacteriaceae isolates of wildlife origin. Antimicrob Agents Chemother. 2018;62:5.
  • Hawkey PM, Xiong J, Ye H, Li H, M’Zali FH. Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People’s Republic of China. FEMS Microbiol Lett. 2001;194(1):53–57. doi:10.1111/j.1574-6968.2001.tb09445.x11150665
  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. doi:10.1371/journal.pcbi.100559528594827
  • Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31(17):2877–2878. doi:10.1093/bioinformatics/btv27125913206
  • Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi:10.1007/BF17343597288891
  • Chen S, Hu F, Liu Y, Zhu D, Wang H, Zhang Y. Detection and spread of carbapenem-resistant citrobacter freundii in a teaching hospital in China. Am J Infect Control. 2011;39(9):e55–e60. doi:10.1016/j.ajic.2011.02.00921705111
  • Venditti C, Fortini D, Villa L, et al. Circulation of blaKPC-3-carrying IncX3 plasmids among citrobacter freundii isolates in an Italian Hospital. Antimicrob Agents Chemother. 2017;61:8. doi:10.1128/AAC.00505-17
  • Jin L, Wang R, Wang X, et al. Emergence of mcr-1 and carbapenemase genes in hospital sewage water in Beijing, China. J Antimicrob Chemother. 2018;73(1):84–87. doi:10.1093/jac/dkx35529040585
  • Hammerum AM, Hansen F, Nielsen HL, et al. Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. J Antimicrob Chemother. 2016;71(11):3117–3124. doi:10.1093/jac/dkw28927494919
  • Yang L, Li P, Liang B, et al. Multidrug-resistant Citrobacter freundii ST139 co-producing NDM-1 and CMY-152 from China. Sci Rep. 2018;8(1):10653. doi:10.1038/s41598-018-28879-930006537
  • Gaibani P, Ambretti S, Farruggia P, et al. Outbreak of Citrobacter freundii carrying VIM-1 in an Italian Hospital, identified during the carbapenemases screening actions, June 2012. Int J Infect Dis. 2013;17(9):e714–e717. doi:10.1016/j.ijid.2013.02.00723528638
  • Santos C, Ramalheira E, Da Silva G, Mendo S. Genetically unrelated multidrug- and carbapenem-resistant Citrobacter freundii detected in outpatients admitted to a Portuguese hospital. J Glob Antimicrob Resist. 2017;8:18–22. doi:10.1016/j.jgar.2016.09.01027915087
  • Xiong J, Deraspe M, Iqbal N, et al. Genome and plasmid analysis of blaIMP-4-carrying Citrobacter freundii B38. Antimicrob Agents Chemother. 2016;60(11):6719–6725. doi:10.1128/AAC.00588-1627572407
  • Feng W, Zhou D, Wang Q, et al. Dissemination of IMP-4-encoding pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital. Sci Rep. 2016;6:33419. doi:10.1038/srep3341927641711
  • Yamamoto N, Kawahara R, Akeda Y, et al. Development of selective medium for IMP-type carbapenemase-producing Enterobacteriaceae in stool specimens. BMC Infect Dis. 2017;17(1):229. doi:10.1186/s12879-017-2312-128340557
  • Amoureux L, Riedweg K, Chapuis A, et al. Nosocomial infections with IMP-19-producing pseudomonas aeruginosa linked to contaminated sinks, France. Emerg Infect Dis. 2017;23(2):304–307. doi:10.3201/eid2302.16064928098548
  • Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(2):e01882–e01817. doi:10.1128/AAC.01882-1729203488
  • Koh TH, Sng LH, Wang GC, Hsu LY, Zhao Y. IMP-4 and OXA beta-lactamases in acinetobacter baumannii from Singapore. J Antimicrob Chemother. 2007;59(4):627–632. doi:10.1093/jac/dkl54417284537
  • Sidjabat HE, Heney C, George NM, Nimmo GR, Paterson DL. Interspecies transfer of blaIMP-4 in a patient with prolonged colonization by IMP-4-producing enterobacteriaceae. J Clin Microbiol. 2014;52(10):3816–3818. doi:10.1128/JCM.01491-1425056334
  • Espedido BA, Partridge SR, Iredell JR. bla(IMP-4) in different genetic contexts in enterobacteriaceae isolates from Australia. Antimicrob Agents Chemother. 2008;52(8):2984–2987. doi:10.1128/AAC.01634-0718490506
  • Dolejska M, Masarikova M, Dobiasova H, et al. High prevalence of Salmonella and IMP-4-producing enterobacteriaceae in the silver gull on five Islands, Australia. J Antimicrob Chemother. 2016;71(1):63–70. doi:10.1093/jac/dkv30626472769
  • Som S, Bhagwat AS, Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987;15(1):313–332. doi:10.1093/nar/15.1.3133029675
  • Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 2001;29(18):3742–3756. doi:10.1093/nar/29.18.374211557807
  • Eikmeyer F, Hadiati A, Szczepanowski R, et al. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid. 2012;68(1):13–24. doi:10.1016/j.plasmid.2012.01.01122326849
  • Carattoli A, Aschbacher R, March A, Larcher C, Livermore DM, Woodford N. Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J Antimicrob Chemother. 2010;65(10):2070–2075. doi:10.1093/jac/dkq26920656680
  • Kayama S, Shigemoto N, Kuwahara R, et al. Complete nucleotide sequence of the IncN plasmid encoding IMP-6 and CTX-M-2 from emerging carbapenem-resistant Enterobacteriaceae in Japan. Antimicrob Agents Chemother. 2015;59(2):1356–1359. doi:10.1128/AAC.04759-1425487806
  • Lai K, Ma Y, Guo L, An J, Ye L, Yang J. Molecular characterization of clinical IMP-producing Klebsiella pneumoniae isolates from a Chinese Tertiary Hospital. Ann Clin Microbiol Antimicrob. 2017;16(1):42. doi:10.1186/s12941-017-0218-928629366
  • Chen L, Chavda KD, Fraimow HS, et al. Complete nucleotide sequences of blaKPC-4- and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob Agents Chemother. 2013;57(1):269–276. doi:10.1128/AAC.01648-1223114770
  • Rodrigues C, Bavlovic J, Machado E, Amorim J, Peixe L, Novais A. KPC-3-producing Klebsiella pneumoniae in Portugal Linked to previously circulating non-CG258 lineages and uncommon genetic platforms (Tn4401d-IncFIA and Tn4401d-IncN). Front Microbiol. 2016;7:1000. doi:10.3389/fmicb.2016.0100027446040
  • Chen CJ, Wu TL, Lu PL, et al. Closely related NDM-1-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. PLoS One. 2014;9(8):e104899. doi:10.1371/journal.pone.010489925144712
  • Ahmad N, Khalid S, Ali SM, Khan AU. Occurrence of blaNDM variants among enterobacteriaceae from a neonatal intensive care unit in a Northern India Hospital. Front Microbiol. 2018;9:407. doi:10.3389/fmicb.2018.0040729563908
  • Naseer U, Eriksen BO, Sundsfjord A, Samuelsen O. Fecal colonization of VIM-1-producing Klebsiella pneumoniae and in vivo transfer of multidrug-resistant IncN plasmid in a renal transplant patient. Diagn Microbiol Infect Dis. 2012;72(4):363–366. doi:10.1016/j.diagmicrobio.2011.12.01022300955
  • Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother. 2011;55(9):4224–4229. doi:10.1128/AAC.00165-1121746951
  • Villa L, Carattoli A, Nordmann P, Carta C, Poirel L. Complete sequence of the IncT-type plasmid pT-OXA-181 carrying the blaOXA-181 carbapenemase gene from Citrobacter freundii. Antimicrob Agents Chemother. 2013;57(4):1965–1967. doi:10.1128/AAC.01297-1223357767
  • Qu D, Shen Y, Hu L, et al. Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:IncpA1763-KPC:IncN1 or IncFIIpHN7A8: incpA1763-KPC:IncN1. Infect Drug Resist. 2019;12:285–296. doi:10.2147/IDR.S18916830774396
  • Partridge SR, Ginn AN, Paulsen IT, Iredell JR. pEl1573 carrying blaIMP-4, from Sydney, Australia, is closely related to other IncL/M plasmids. Antimicrob Agents Chemother. 2012;56(11):6029–6032. doi:10.1128/AAC.01189-1222926566
  • Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One. 2015;10(5):e0123063. doi:10.1371/journal.pone.012306325933288
  • Ho PL, Lo WU, Chan J, et al. pIMP-PH114 carrying bla IMP-4 in a Klebsiella pneumoniae strain is closely related to other multidrug-resistant IncA/C2 plasmids. Curr Microbiol. 2014;68(2):227–232. doi:10.1007/s00284-013-0471-x24121549
  • PL CY H, Wang Y, Lo WU, Lai EL, Chow KH, Cheng VC. Characterization of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from a healthcare region in Hong Kong. Eur J Clin Microbiol Infect Dis. 2016;35(3):379–385. doi:10.1007/s10096-015-2550-326740321
  • Lo WU, Cheung YY, Lai E, Lung D, Que TL, Ho PL. Complete sequence of an IncN plasmid, pIMP-HZ1, carrying blaIMP-4 in a Klebsiella pneumoniae strain associated with medical travel to China. Antimicrob Agents Chemother. 2013;57(3):1561–1562. doi:10.1128/AAC.02298-1223274671