569
Views
30
CrossRef citations to date
0
Altmetric
Review

Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales

, , ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 125-142 | Published online: 18 Jan 2021

References

  • Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:8. doi:10.1101/cshperspect.a025247
  • van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(2):163–171. doi:10.1093/cid/cix78329020404
  • McDanel JS, Perencevich EN, Diekema DJ, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis. 2015;61(3):361–367. doi:10.1093/cid/civ30825900170
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–455. doi:10.1007/s40121-018-0214-130270406
  • Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146(3713):837. doi:10.1038/146837a0
  • Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–331.6109327
  • Hammoudi Halat D, Ayoub Moubareck C. The current burden of carbapenemases: review of significant properties and dissemination among gram-negative bacteria. Antibiotics (Basel). 2020;9:4.
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-0919995920
  • McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M, Scheetz MH. Correlations of antibiotic use and carbapenem resistance in enterobacteriaceae. Antimicrob Agents Chemother. 2013;57(10):5131–5133. doi:10.1128/AAC.00607-1323836188
  • Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33:2.
  • Kazmierczak KM, Rabine S, Hackel M, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–1078. doi:10.1128/AAC.02379-1526643349
  • Kazi M, Drego L, Nikam C, et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care laboratory in Mumbai. Eur J Clin Microbiol Infect Dis. 2015;34(3):467–472. doi:10.1007/s10096-014-2249-x25260787
  • van Duin D. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4):460–469.27593176
  • van Duin D, Arias CA, Komarow L, et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis. 2020;20(6):731–741. doi:10.1016/S1473-3099(19)30755-832151332
  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–151. doi:10.1128/AAC.35.1.1471901695
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306–325. doi:10.1128/CMR.18.2.306-325.200515831827
  • Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891–897. doi:10.1128/AAC.44.4.891-897.200010722487
  • Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–1590. doi:10.1128/AAC.43.7.158410390207
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-0919770275
  • Moellering RC Jr. NDM-1–a cause for worldwide concern. N Engl J Med. 2010;363(25):2377–2379. doi:10.1056/NEJMp101171521158655
  • López C, Ayala JA, Bonomo RA, González LJ, Vila AJ. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun. 2019;10(1):3617. doi:10.1038/s41467-019-11615-w31399590
  • Ma T, Fu J, Xie N, et al. Fitness cost of bla(NDM-5)-carrying p3R-IncX3 plasmids in wild-type NDM-free Enterobacteriaceae. Microorganisms. 2020;8:3. doi:10.3390/microorganisms8030377
  • Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32:2.
  • Falagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60(5):1124–1130. doi:10.1093/jac/dkm35617884829
  • Snyder BM, Montague BT, Anandan S, et al. Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae. Epidemiol Infect. 2019;147:e137. doi:10.1017/S095026881900025630869056
  • Daikos GL, Petrikkos P, Psichogiou M, et al. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009;53(5):1868–1873. doi:10.1128/AAC.00782-0819223638
  • Daikos GL, Karabinis A, Paramythiotou E, et al. VIM-1-producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int J Antimicrob Agents. 2007;29(4):471–473. doi:10.1016/j.ijantimicag.2006.11.00617229554
  • de Jager P, Chirwa T, Naidoo S, Perovic O, Thomas J. Nosocomial outbreak of New Delhi metallo-β-lactamase-1-producing gram-negative bacteria in South Africa: a case-control study. PLoS One. 2015;10(4):e0123337. doi:10.1371/journal.pone.012333725909482
  • Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL-producing Enterobacterales. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa586
  • Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 2017;64(1):15–23. doi:10.1093/cid/ciw64927678085
  • Nanosphere, Inc. Verigene Gram Negative Blood Culture Nucleic Acid Test (BC-GN). 2014; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K132843.pdf. Accessed 101 2020.
  • BioFire Diagnostics, LLC. BioFire Blood Culture Identification 2 (BCID2) Panel. 2020; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K193519.pdf. Accessed 101 2020.
  • BioFire Diagnostics, LLC. FilmArray Pneumonia Panel. 2018 Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K180966.pdf. Accessed 101 2020.
  • Curetis GmbH. Unyvero Lower Respiratory Tract (LRT) Application. 2018; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170047.pdf. Accessed 101 2020.
  • Curetis GmbH. Unyvero LRT BAL Application. 2019; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K191967.pdf. Accessed 101 2020.
  • GenMark Diagnostics, Inc. EPlex Blood Culture Identification Gram Negative (BCID-GN) Panel. 2019; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K182619.pdf. Accessed 101 2020.
  • Cepheid. Xpert Carba-R. 2018; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K173263.pdf. Accessed 101 2020.
  • Check-Points Health B.V. BD MAX Check-Points CPO. 2019; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K190613.pdf. Accessed 101 2020.
  • GenePOC Inc. GenePOC Carba. 2019; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K190275.pdf. Accessed 101 2020.
  • NG Biotech. NG-Test CARBA 5. 2019; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K191889.pdf. Accessed 101 2020.
  • bioMérieux SA. Rapidec Carba NP. 2017; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/K162385.pdf. Accessed 101 2020.
  • Dortet L, Tandé D, de Briel D, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 2018;73(9):2352–2359. doi:10.1093/jac/dky20929897463
  • Accelerate Diagnostics. Accelerate Pheno System, Accelerate Phenotest BC Kit. 2017; Available from:https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN160032.pdf. Accessed 101 2020.
  • Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 Countries from 2012 to 2015. Antimicrob Agents Chemother. 2017;61:9. doi:10.1128/AAC.00472-17
  • Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother. 2016;71(10):2713–2722. doi:10.1093/jac/dkw23927432599
  • Marshall S, Hujer AM, Rojas LJ, et al. Can ceftazidime-avibactam and aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61:4. doi:10.1128/AAC.02243-16
  • Wenzler E, Deraedt MF, Harrington AT, Danizger LH. Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-beta-lactamase-producing gram-negative pathogens. Diagn Microbiol Infect Dis. 2017;88(4):352–354. doi:10.1016/j.diagmicrobio.2017.05.00928602518
  • Biagi M, Wu T, Lee M, Patel S, Butler D, Wenzler E. Searching for the optimal treatment for metallo- and serine-beta-lactamase producing enterobacteriaceae: aztreonam in combination with ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob Agents Chemother. 2019. doi:10.1128/AAC.01426-19
  • Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:9. doi:10.1128/AAC.01008-17
  • Avery LM, Nicolau DP. Assessing the in vitro activity of ceftazidime/avibactam and aztreonam among carbapenemase-producing Enterobacteriaceae: defining the zone of hope. Int J Antimicrob Agents. 2018;52(5):688–691. doi:10.1016/j.ijantimicag.2018.07.01130044946
  • Ehmann DE, Jahic H, Ross PL, et al. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J Biol Chem. 2013;288(39):27960–27971. doi:10.1074/jbc.M113.48597923913691
  • Stojanoski V, Chow DC, Fryszczyn B, et al. Structural basis for different substrate profiles of two closely related Class D β-Lactamases and their inhibition by Halogens. Biochemistry. 2015;54(21):3370–3380. doi:10.1021/acs.biochem.5b0029825938261
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:11. doi:10.1128/AAC.01443-17
  • Haidar G, Clancy CJ, Chen L, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:9. doi:10.1128/AAC.00642-17
  • Li H, Estabrook M, Jacoby GA, Nichols WW, Testa RT, Bush K. In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob Agents Chemother. 2015;59(3):1789–1793. doi:10.1128/AAC.04191-1425534728
  • Canver MC, Satlin MJ, Westblade LF, et al. Activity of imipenem-relebactam and comparator agents against genetically characterized isolates of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63:9. doi:10.1128/AAC.00672-19
  • Hobson CA, Bonacorsi S, Fahd M, et al. Successful treatment of bacteremia due to NDM-1-producing morganella morganii with aztreonam and ceftazidime-avibactam combination in a pediatric patient with hematologic malignancy. Antimicrob Agents Chemother. 2019;63:2.
  • Yasmin M, Fouts DE, Jacobs MR, et al. Monitoring ceftazidime-avibactam and aztreonam concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. Carrying Both Klebsiella pneumoniae Carbapenemase-4 and New Delhi Metallo-beta-Lactamase-1. Clin Infect Dis. 2020;71(4):1095–1098. doi:10.1093/cid/ciz115531802119
  • Benchetrit L, Mathy V, Armand-Lefevre L, Bouadma L, Timsit JF. Successful treatment of septic shock due to NDM-1-producing Klebsiella pneumoniae using ceftazidime/avibactam combined with aztreonam in solid organ transplant recipients: report of two cases. Int J Antimicrob Agents. 2020;55(1):105842. doi:10.1016/j.ijantimicag.2019.10.02331704216
  • Shah PJ, Tran T, Emelogu F, Tariq F. Aztreonam, Ceftazidime/ Avibactam, and colistin combination for the management of carbapenemase-producing klebsiella pneumoniae bacteremia: a case report. J Pharm Pract. 2019;897190019882262.31698984
  • Shaw E, Rombauts A, Tubau F, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018;73(4):1104–1106. doi:10.1093/jac/dkx49629272413
  • Lodise TP, Smith NM, O’Donnell N, et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J Antimicrob Chemother. 2020;75(9):2622–2632. doi:10.1093/jac/dkaa19732464664
  • Ransom E, Bhatnagar A, Patel JB, et al. Validation of aztreonam-avibactam susceptibility testing using digitally dispensed custom panels. J Clin Microbiol. 2020;58:4. doi:10.1128/JCM.01944-19
  • Clinicaltrials.gov. Efficacy, safety, and tolerability of ATM-AVI in the treatment of serious infection due to MBL-producing gram-negative bacteria. 2018; Available from:https://www.clinicaltrials.gov/ct2/show/NCT3580044?cond=aztreonam+avibactam&draw=2&rank=5. Accessed 1022 2020.
  • Crandon JL, Nicolau DP. Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-beta-lactamase producers. Antimicrob Agents Chemother. 2013;57(7):3299–3306. doi:10.1128/AAC.01989-1223650162
  • Castanheira M, Sader HS, Flamm RK, Jones RN, Huband MD Activity of aztreonam combined with the beta-lactamase inhibitor avibactam tested against metallo beta-lactamase-producing organisms. P1615. ECCMID 2013; Berlin, Germany. 2013; Available from:https://www.escmid.org/escmid_publications/escmid_elibrary/?q=Activity+of+Aztreonam+Combined+with+the+Beta-lactamase+Inhibitor+Avibactam+Tested+against+Metallo-%CE%B2-lactamase-producing+Organisms&id=2173&L=0&x=28&y=17. Accessed 101 2020.
  • Chew KL, Tay MKL, Cheng B, Lin RTP, Octavia S, Teo JWP. Aztreonam-avibactam combination restores susceptibility of aztreonam in dual-carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:8. doi:10.1128/AAC.00414-18
  • Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70(5):1420–1428. doi:10.1093/jac/dku56825634992
  • Sadek M, Juhas M, Poirel L, Nordmann P. Genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2020. doi:10.1128/AAC.01659-20
  • Ma K, Feng Y, McNally A, Zong Z. Struggle to survive: the choir of target alteration, hydrolyzing enzyme, and plasmid expression as a novel Aztreonam-Avibactam resistance mechanism. mSystems. 2020;5:6. doi:10.1128/mSystems.00821-20
  • Niu S, Wei J, Zou C, et al. In vitro selection of aztreonam/avibactam resistance in dual-carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2020;75(3):559–565. doi:10.1093/jac/dkz46831722380
  • Cornely OA, Cisneros JM, Torre-Cisneros J, et al. Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother. 2020;75(3):618–627. doi:10.1093/jac/dkz49731828337
  • Tamma PD, Aitken SL, Bonomo RA. Infectious Diseases Society of America antimicrobial resistant treatment guidance: gram-negative. Bacterial Infections. 2020.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore Cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S538–S543. doi:10.1093/cid/ciz82631724047
  • Ito-Horiyama T, Ishii Y, Ito A, et al. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob Agents Chemother. 2016;60(7):4384–4386. doi:10.1128/AAC.03098-1527139465
  • Kohira N, Hackel MA, Ishioka Y, et al. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J Glob Antimicrob Resist. 2020;22:738–741. doi:10.1016/j.jgar.2020.07.00932702396
  • Mushtaq S, Sadouki Z, Vickers A, Livermore DM, Woodford N. In vitro activity of cefiderocol, a siderophore cephalosporin, against multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother. 2020;64(12). doi:10.1128/AAC.01582-20
  • Kazmierczak KM, Bradford PA, Stone GG, de Jonge BLM, Sahm DF. In vitro activity of ceftazidime-Avibactam and Aztreonam-Avibactam against OXA-48-carrying enterobacteriaceae isolated as part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62:12. doi:10.1128/AAC.00592-18
  • Nakamura R, Ito-Horiyama T, Takemura M, et al. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother. 2019;63:9. doi:10.1128/AAC.02031-18
  • Katsube T, Echols R, Wajima T. Pharmacokinetic and pharmacodynamic profiles of cefiderocol, a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S552–S558. doi:10.1093/cid/ciz82831724042
  • Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Pharmacokinetic/Pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2017;61:1. doi:10.1128/AAC.01381-16
  • Delgado-Valverde M, Conejo MDC, Serrano L, Fernández-Cuenca F, Pascual Á. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Antimicrob Chemother. 2020;75(7):1840–1849. doi:10.1093/jac/dkaa11732277821
  • Morris CP, Bergman Y, Tekle T, Fissel J, Tamma PD, Simner PJ. Cefiderocol antimicrobial susceptibility testing against multidrug-resistant gram-negative Bacilli: a comparison of disk diffusion to broth microdilution. J Clin Microbiol. 2020.
  • Albano M, Karau MJ, Schuetz AN, Patel R. Comparison of agar dilution to broth microdilution for testing in vitro activity of cefiderocol against gram-negative bacilli. J Clin Microbiol. 2020. doi:10.1128/JCM.00966-20
  • Contreras DA, Fitzwater SP, Nanayakkara DD, et al. Coinfections of two strains of NDM-1- and OXA-232-coproducing Klebsiella pneumoniae in a kidney transplant patient. Antimicrob Agents Chemother. 2020;64:4. doi:10.1128/AAC.00948-19
  • Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2020.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2020. doi:10.1016/S1473-3099(20)30796-9
  • Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–1328. doi:10.1016/S1473-3099(18)30554-130509675
  • Food and Drug Administration (FDA) Antimicrobial Drugs Advisory Committee. 2019. Cefiderocol briefing document. NDA 2094445. Shionogi I, Florham Park, NJ.
  • Fetroja (cefiderocol). Package Insert. Shionogi FP, NJ; 2019.
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100-30. 29th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • Simner PJ, Patel R. Cefiderocol antimicrobial susceptibility testing considerations: the Achilles Heel of the Trojan Horse? J Clin Microbiol. 2020;59(1):e00951–20. doi:10.1128/JCM.00951-2032727829
  • Asempa TE, Abdelraouf K, Nicolau DP. Metallo-beta-lactamase resistance in Enterobacteriaceae is an artefact of currently utilized antimicrobial susceptibility testing methods. J Antimicrob Chemother. 2020;75(4):997–1005. doi:10.1093/jac/dkz53231930305
  • Roujansky A, de Lastours V, Guérin F, et al. Analysis of paradoxical efficacy of carbapenems against carbapenemase-producing Escherichia coli in a Murine model of lethal peritonitis. Antimicrob Agents Chemother. 2020;64:8. doi:10.1128/AAC.00853-20
  • Das S, Johnson A, McEntee L, et al. Pharmacodynamics of the Novel Metallo-β-Lactamase inhibitor ANT2681 in combination with meropenem for the treatment of infections caused by NDM-producing enterobacteriaceae. Antimicrob Agents Chemother. 2020;64(11). doi:10.1128/AAC.01076-20.
  • Cheng Z, Shurina BA, Bethel CR, et al. A single salt bridge in VIM-20 increases protein stability and antibiotic resistance under low-zinc conditions. mBio. 2019;10:6. doi:10.1128/mBio.02412-19
  • Principe L, Vecchio G, Sheehan G, et al. Zinc chelators as Carbapenem adjuvants for Metallo-β-lactamase-producing bacteria: in vitro and in vivo evaluation. Microb Drug Resist. 2020;26(10):1133–1143. doi:10.1089/mdr.2020.003732364820
  • Cheminet G, de Lastours V, Poirel L, et al. Dimercaptosuccinic acid in combination with carbapenems against isogenic strains of Escherichia coli producing or not producing a metallo-β-lactamase in vitro and in murine peritonitis. J Antimicrob Chemother. 2020;75(12):3593–3600. doi:10.1093/jac/dkaa34732790873
  • Chibabhai V, Nana T, Bosman N, Thomas T, Lowman W. Were all carbapenemases created equal? Treatment of NDM-producing extensively drug-resistant Enterobacteriaceae: a case report and literature review. Infection. 2018;46(1):1–13. doi:10.1007/s15010-017-1070-828916900
  • Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect. 2011;17(8):1135–1141. doi:10.1111/j.1469-0691.2011.03553.x21635663
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–2290. doi:10.1093/jac/dkt17823696619
  • Cross AS, Opal S, Kopecko DJ. Progressive increase in antibiotic resistance of gram-negative bacterial isolates. Walter Reed Hospital, 1976 to 1980: specific analysis of gentamicin, tobramycin, and amikacin resistance. Arch Intern Med. 1983;143(11):2075–2080. doi:10.1001/archinte.1983.003501100530156639227
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–171. doi:10.1016/j.drup.2010.08.00320833577
  • Miro E, Grunbaum F, Gomez L, et al. Characterization of aminoglycoside-modifying enzymes in enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19(2):94–99. doi:10.1089/mdr.2012.012523206280
  • Galani I, Nafplioti K, Adamou P, et al. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019;19(1):167. doi:10.1186/s12879-019-3801-130770727
  • Firmo EF, Beltrao EMB, Silva F, et al. Association of blaNDM-1 with blaKPC-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J Glob Antimicrob Resist. 2020;21:255–261. doi:10.1016/j.jgar.2019.08.02631505299
  • Aggen JB, Armstrong ES, Goldblum AA, et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother. 2010;54(11):4636–4642. doi:10.1128/AAC.00572-1020805391
  • Castanheira M, Deshpande LM, Woosley LN, Serio AW, Krause KM, Flamm RK. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73(12):3346–3354. doi:10.1093/jac/dky34430219857
  • Castanheira M, Davis AP, Serio AW, Krause KM, Mendes RE. In vitro activity of Plazomicin against Enterobacteriaceae isolates carrying genes encoding aminoglycoside-modifying enzymes most common in US Census divisions. Diagn Microbiol Infect Dis. 2019;94(1):73–77. doi:10.1016/j.diagmicrobio.2018.10.02330661726
  • Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45(1):88–94. doi:10.1086/51860517554708
  • Fleischmann WA, Greenwood-Quaintance KE, Patel R. In vitro activity of plazomicin compared to amikacin, gentamicin, and tobramycin against multidrug-resistant aerobic Gram-Negative Bacilli. Antimicrob Agents Chemother. 2020;64:2. doi:10.1128/AAC.01711-19
  • Lutgring JD, Balbuena R, Reese N, et al. Antibiotic susceptibility of NDM-producing enterobacterales collected in the United States in 2017 and 2018. Antimicrob Agents Chemother. 2020;64:9. doi:10.1128/AAC.00499-20
  • Clark JA, Kulengowski B, Burgess DS. In vitro activity of plazomicin compared to other clinically relevant aminoglycosides in carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis. 2020;98(2):115117. doi:10.1016/j.diagmicrobio.2020.11511732755805
  • Bhavnani SM, Onufrak NJ, Hammel JP, et al. Re-Appraisal of Aminoglycoside (AG) susceptibility testing breakpoints based on the application of Pharmacokinetics–Pharmacodynamics (PK-PD) and contemporary microbiology surveillance data. Open Forum Infectious Dis. 2018;5(suppl_1). doi:10.1093/ofid/ofy209.170.
  • Serio AW, Keepers T, Krause KM. Plazomicin is active against metallo-beta-lactamase-producing Enterobacteriaceae. Open Forum Infect Dis. 2019;6(4):ofz123. doi:10.1093/ofid/ofz12330968059
  • Sou T, Hansen J, Liepinsh E, et al. Model-informed drug development for antimicrobials: translational PK and PK/PD modeling to predict an efficacious human dose for Apramycin. Clin Pharmacol Ther. 2020. doi:10.1002/cpt.2104
  • Hao M, Shi X, Lv J, et al. In vitro activity of apramycin against Carbapenem-resistant and Hypervirulent Klebsiella pneumoniae Isolates. Front Microbiol. 2020;11:425. doi:10.3389/fmicb.2020.0042532231657
  • Rodriguez-Avial I, Pena I, Picazo JJ, Rodriguez-Avial C, Culebras E. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int J Antimicrob Agents. 2015;46(6):616–621. doi:10.1016/j.ijantimicag.2015.07.02126391381
  • McKinnell JA, Dwyer JP, Talbot GH, et al. Plazomicin for infections caused by carbapenem-resistant Enterobacteriaceae. N Engl J Med. 2019;380(8):791–793. doi:10.1056/NEJMc180763430786196
  • Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. doi:10.1101/cshperspect.a02538726989065
  • Li X, Mu X, Yang Y, et al. Rapid emergence of high-level tigecycline resistance in Escherichia coli strains harbouring blaNDM-5 in vivo. Int J Antimicrob Agents. 2016;47(4):324–327. doi:10.1016/j.ijantimicag.2016.01.00526944192
  • Sun J, Chen C, Cui CY, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol. 2019;4(9):1457–1464. doi:10.1038/s41564-019-0496-431235960
  • Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against Carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(6):3840–3844. doi:10.1128/AAC.00436-1627044556
  • Johnston BD, Thuras P, Porter SB, et al. Activity of Cefiderocol, Ceftazidime-Avibactam, and Eravacycline against Carbapenem-Resistant Escherichia coli Isolates from the United States and International Sites in Relation to Clonal Background, Resistance Genes, Coresistance, and Region. Antimicrob Agents Chemother. 2020;64:10.
  • Monogue ML, Abbo LM, Rosa R, et al. In vitro discordance with in vivo activity: humanized exposures of Ceftazidime-Avibactam, Aztreonam, and Tigecycline Alone and in Combination against New Delhi Metallo-beta-Lactamase-producing Klebsiella pneumoniae in a Murine Lung Infection Model. Antimicrob Agents Chemother. 2017;61:7. doi:10.1128/AAC.00486-17
  • Balandin Moreno B, Fernandez Simon I, Pintado Garcia V, et al. Tigecycline therapy for infections due to carbapenemase-producing Klebsiella pneumoniae in critically ill patients. Scand J Infect Dis. 2014;46(3):175–180. doi:10.3109/00365548.2013.86160824354959
  • Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med. 2017;7:2. doi:10.1101/cshperspect.a025262
  • Vardakas KZ, Legakis NJ, Triarides N, Falagas ME. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269–285. doi:10.1016/j.ijantimicag.2016.02.00127013000
  • Pena I, Picazo JJ, Rodriguez-Avial C, Rodriguez-Avial I. Carbapenemase-producing Enterobacteriaceae in a tertiary hospital in Madrid, Spain: high percentage of colistin resistance among VIM-1-producing Klebsiella pneumoniae ST11 isolates. Int J Antimicrob Agents. 2014;43(5):460–464. doi:10.1016/j.ijantimicag.2014.01.02124657043
  • Lepak AJ, Zhao M, VanScoy B, et al. In Vivo Pharmacokinetics and pharmacodynamics of ZTI-01 (Fosfomycin for injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:6.
  • Kaye KS, Rice LB, Dane AL, et al. Fosfomycin for Injection (ZTI-01) versus piperacillin-tazobactam for the treatment of complicated urinary tract infection including acute pyelonephritis: ZEUS, a Phase 2/3 randomized trial. Clin Infect Dis. 2019;69(12):2045–2056. doi:10.1093/cid/ciz18130861061
  • Wenzler E, Ellis-Grosse EJ, Rodvold KA. Pharmacokinetics, safety, and tolerability of single-dose Intravenous (ZTI-01) and oral fosfomycin in healthy volunteers. Antimicrob Agents Chemother. 2017;61:9. doi:10.1128/AAC.00775-17
  • Grabein B, Graninger W, Rodriguez Bano J, Dinh A, Liesenfeld DB. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin Microbiol Infect. 2017;23(6):363–372. doi:10.1016/j.cmi.2016.12.00527956267
  • Lim TP, Teo JQ, Goh AW, et al. In vitro pharmacodynamics of Fosfomycin against Carbapenem-resistant Enterobacter cloacae and Klebsiella aerogenes. Antimicrob Agents Chemother. 2020;64:9. doi:10.1128/AAC.00536-20
  • Bulman ZP, Zhao M, Satlin MJ, et al. Polymyxin B and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model. Int J Antimicrob Agents. 2018;52(1):114–118. doi:10.1016/j.ijantimicag.2018.02.01029486233
  • Zhao M, Bulman ZP, Lenhard JR, et al. Pharmacodynamics of colistin and fosfomycin: a ‘treasure trove’ combination combats KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72(7):1985–1990. doi:10.1093/jac/dkx07028444224
  • Elliott ZS, Barry KE, Cox HL, et al. The role of fosA in challenges with fosfomycin susceptibility testing of multispecies klebsiella pneumoniae carbapenemase-producing clinical isolates. J Clin Microbiol. 2019;57:10. doi:10.1128/JCM.00634-19
  • van den Bijllaardt W, Schijffelen MJ, Bosboom RW, et al. Susceptibility of ESBL Escherichia coli and Klebsiella pneumoniae to fosfomycin in the Netherlands and comparison of several testing methods including Etest, MIC test strip, Vitek2, Phoenix and disc diffusion. J Antimicrob Chemother. 2018;73(9):2380–2387. doi:10.1093/jac/dky21429982660
  • Camarlinghi G, Parisio EM, Antonelli A, et al. Discrepancies in fosfomycin susceptibility testing of KPC-producing Klebsiella pneumoniae with various commercial methods. Diagn Microbiol Infect Dis. 2019;93(1):74–76. doi:10.1016/j.diagmicrobio.2018.07.01430126624
  • Moffatt JH, Harper M, Boyce JD. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019;1145:55–71.31364071
  • Bradford PA, Kazmierczak KM, Biedenbach DJ, Wise MG, Hackel M, Sahm DF. Correlation of beta-lactamase production and colistin resistance among Enterobacteriaceae isolates from a global surveillance program. Antimicrob Agents Chemother. 2015;60(3):1385–1392. doi:10.1128/AAC.01870-1526666920
  • Kubin CJ, Ellman TM, Phadke V, Haynes LJ, Calfee DP, Yin MT. Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect. 2012;65(1):80–87. doi:10.1016/j.jinf.2012.01.01522326553
  • Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-avibactam is superior to other treatment regimens against Carbapenem-resistant Klebsiella pneumoniae Bacteremia. Antimicrob Agents Chemother. 2017;61(8):e00883–00817. doi:10.1128/AAC.00883-1728559250
  • Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39. doi:10.1002/phar.220930710469
  • Bulman ZP, Chen L, Walsh TJ, et al. Polymyxin combinations combat Escherichia coli harboring mcr-1 and blaNDM-5: preparation for a Postantibiotic Era. mBio. 2017;8(4):e00540–00517. doi:10.1128/mBio.00540-1728743810
  • Tangden T, Hickman RA, Forsberg P, Lagerback P, Giske CG, Cars O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58(3):1757–1762. doi:10.1128/AAC.00741-1324395223
  • Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN. Variations in the occurrence of resistance phenotypes and carbapenemase genes among enterobacteriaceae isolates in 20 Years of the SENTRY Antimicrobial surveillance program. Open Forum Infect Dis. 2019;6(Suppl 1):S23–S33. doi:10.1093/ofid/ofy34730895212
  • Wang X, Zhao C, Wang Q, et al. In vitro activity of the novel beta-lactamase inhibitor taniborbactam (VNRX-5133), in combination with cefepime or meropenem, against MDR Gram-negative bacterial isolates from China. J Antimicrob Chemother. 2020;75(7):1850–1858. doi:10.1093/jac/dkaa05332154866
  • Hamrick JC, Docquier JD, Uehara T, et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-beta-lactamases, restores activity of cefepime in enterobacterales and pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64:3. doi:10.1128/AAC.01963-19
  • Blais J, Lopez S, Li C, et al. In vitro activity of LYS228, a novel monobactam antibiotic, against multidrug-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:10. doi:10.1128/AAC.00552-18
  • Dean CR, Barkan DT, Bermingham A, et al. Mode of action of the monobactam LYS228 and mechanisms decreasing in vitro susceptibility in escherichia coli and klebsiella pneumoniae. Antimicrob Agents Chemother. 2018;62:10. doi:10.1128/AAC.01200-18
  • Lomovskaya O, Tsivkovski R, Nelson K, et al. Spectrum of Beta-lactamase inhibition by the cyclic boronate QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases: enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases. Antimicrob Agents Chemother. 2020;64:6.
  • Zhang B, Zhu Z, Jia W, et al. In vitro activity of aztreonam-avibactam against metallo-beta-lactamase-producing Enterobacteriaceae – a multicenter study in China. Int J Infect Dis. 2020;97:11–18. doi:10.1016/j.ijid.2020.05.07532473388
  • Kohira N, West J, Ito A, et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob Agents Chemother. 2016;60(2):729–734. doi:10.1128/AAC.01695-1526574013
  • Kazmierczak KM, Tsuji M, Wise MG, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-beta-lactamase-producing isolates (SIDERO-WT-2014 Study). Int J Antimicrob Agents. 2019;53(2):177–184. doi:10.1016/j.ijantimicag.2018.10.00730395986
  • Sonnevend Á, Ghazawi A, Darwish D, et al. In vitro efficacy of ceftazidime-avibactam, aztreonam-avibactam and other rescue antibiotics against carbapenem-resistant Enterobacterales from the Arabian Peninsula. Int J Infect Dis. 2020;99:253–259. doi:10.1016/j.ijid.2020.07.05032738488
  • Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011;37(5):415–419. doi:10.1016/j.ijantimicag.2011.01.01221429716