315
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Emergence of blaNDM-1 Harboring Klebsiella pneumoniae ST29 and ST11 in Veterinary Settings and Waste of Pakistan

, , ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 3033-3043 | Published online: 26 Aug 2020

References

  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658. doi:10.2147/IDR.S17386730349322
  • Baloch Z, Aslam B, Muzammil S, Khurshid M, Rasool MH, Ma K. Selection inversion: a probable tool against antibiotic resistance. Infect Drug Resist. 2018;11:1903–1905. doi:10.2147/IDR.S17675930425539
  • Aslam B, Chaudhry TH, Arshad MI, et al. The first bla KPC harboring Klebsiella pneumoniae ST258 strain isolated in Pakistan. Microbial Drug Resistance. 2020;26:783–786. doi:10.1089/mdr.2019.042032109182
  • Hiroi M, Yamazaki F, Harada T, et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food-producing animals. J Vet Med Sci. 2011;1109290647.
  • Geser N, Stephan R, Hachler H. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res. 2012;8:21. doi:10.1186/1746-6148-8-2122397509
  • Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One. 2014;9(6):e99209. doi:10.1371/journal.pone.009920924905728
  • Hayat S, Siddique MH, Aslam B, et al. Extended-spectrum-β-lactamase producing multidrug resistant klebsiella pneumoniae isolates from pediatrics. Pak J Zool. 2019;51:4. doi:10.17582/journal.pjz/2019.51.4.1251.1257
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-0919770275
  • Hammerum AM, Toleman MA, Hansen F, et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect Dis. 2010;10(12):829–830. doi:10.1016/S1473-3099(10)70276-021109169
  • Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28S36. doi:10.1093/infdis/jiw282
  • Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–5884. doi:10.1128/AAC.01019-1526169401
  • Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M. Emergence of ISAba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. Future Microbiol. 2017;12:1261–1269. doi:10.2217/fmb-2017-008028980827
  • Khurshid M, Rasool MH, Ashfaq UA, et al. Dissemination of bla(OXA-23) harboring carbapenem-resistant acinetobacter baumannii clones in Pakistan. J Global Antimicrobial Resistance. 2020;21:357–362. doi:10.1016/j.jgar.2020.01.001
  • Khurshid M, Rasool MH, Siddique MH, et al. Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. J Infect Dev Ctries. 2019;13(10):899–905. doi:10.3855/jidc.1141032084020
  • Bonomo RA. New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clin Infectious Diseases. 2011;52(4):485–487. doi:10.1093/cid/ciq179
  • Mohsin M, Van Boeckel TP, Saleemi MK, et al. Excessive use of medically important antimicrobials in food animals in Pakistan: a five-year surveillance survey. Glob Health Action. 2019;12(sup1):1697541. doi:10.1080/16549716.2019.169754131795863
  • Chaudhry TH, Aslam B, Arshad MI, Nawaz Z, Waseem M. Occurrence of ESBL-producing Klebsiella pneumoniae in hospital settings and waste. Pak J Pharm Sci. 2019;32(2(Supplementary)):773–778.31103971
  • In C. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–4182. doi:10.1128/JCM.43.8.4178-4182.200516081970
  • Ferrieres L, Hémery G, Nham T, et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol. 2010;192(24):6418–6427. doi:10.1128/JB.00621-1020935093
  • Lyhs U, Ikonen I, Pohjanvirta T, Raninen K, Perko-Mäkelä P, Pelkonen S. Extraintestinal pathogenic Escherichia coli in poultry meat products on the Finnish retail market. Acta Vet Scand. 2012;54(1):64. doi:10.1186/1751-0147-54-6423158013
  • Ohnishi M, Okatani A, Esaki H, et al. Herd prevalence of Enterobacteriaceae producing CTX‐M‐type and CMY‐2 β‐lactamases among Japanese dairy farms. J Appl Microbiol. 2013;115(1):282–289. doi:10.1111/jam.1221123551813
  • Chen B, Hao L, Guo X, Wang N, Ye B. Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China. Environ Sci Pollut Res. 2015;22(18):13950–13959. doi:10.1007/s11356-015-4636-y
  • Koovapra S, Bandyopadhyay S, Das G, et al. Molecular signature of extended spectrum β-lactamase producing Klebsiella pneumoniae isolated from bovine milk in eastern and north-eastern India. Infect Genet Evol. 2016;44:395–402. doi:10.1016/j.meegid.2016.07.03227473782
  • Samanta I, Joardar SN, Mahanti A, Bandyopadhyay S, Sar TK, Dutta TK. Approaches to characterize extended spectrum beta-lactamase/beta-lactamase producing Escherichia coli in healthy organized vis-a-vis backyard farmed pigs in India. Infect Genet Evol. 2015;36:224–230. doi:10.1016/j.meegid.2015.09.02126423671
  • Saishu N, Ozaki H, Murase T. CTX-M-type extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from cases of bovine mastitis in Japan. J Vet Med Sci. 2014;76(8):1153–1156. doi:10.1292/jvms.13-012024784438
  • Timofte D, Maciuca IE, Evans NJ, et al. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother. 2014;58(2):789–794. doi:10.1128/AAC.00752-1324247146
  • Hammad AM, Ahmed AM, Ishida Y, Shimamoto T. First characterization and emergence of SHV-60 in raw milk of a healthy cow in Japan. J Vet Med Sci. 2008;70(11):1269–1272. doi:10.1292/jvms.70.126919057150
  • Zhang W-J, Lu Z, Schwarz S, et al. Complete sequence of the bla NDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother. 2013;68(7):1681–1682. doi:10.1093/jac/dkt06623449827
  • Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncH plasmid carrying the bla NDM-1, bla CTX-M-15 and qnrB1 genes. J Antimicrob Chemother. 2012;67(7):1645–1650. doi:10.1093/jac/dks11422511638
  • Fischer J, Rodríguez I, Schmoger S, et al. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J Antimicrob Chemother. 2012;67(7):1793–1795. doi:10.1093/jac/dks10822454489
  • Nahid F, Khan AA, Rehman S, Zahra R. Prevalence of metallo-β-lactamase NDM-1-producing multi-drug resistant bacteria at two Pakistani hospitals and implications for public health. J Infect Public Heal. 2013;6(6):487–493. doi:10.1016/j.jiph.2013.06.006
  • Qamar MU, Saleem S, Toleman MA, et al. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol. 2018;13(1):13–26. doi:10.2217/fmb-2017-011929226698
  • Kelly BG, Vespermann A, Bolton DJ. Gene transfer events and their occurrence in selected environments. Food Chem Toxicol. 2009;47(5):978–983. doi:10.1016/j.fct.2008.06.01218639605
  • Uz Zaman T, Aldrees M, Al Johani SM, Alrodayyan M, Aldughashem FA, Balkhy HH. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int j Infectious Diseases. 2014;28:186–192. doi:10.1016/j.ijid.2014.05.02125245001
  • Eibach D, Dekker D, Gyau Boahen K, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet Microbiol. 2018;217:7–12. doi:10.1016/j.vetmic.2018.02.02329615260
  • Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother. 2011;66(2):307–312. doi:10.1093/jac/dkq43121131324
  • Leverstein‐van Hall M, Dierikx C, Cohen Stuart J, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infection. 2011;17(6):873–880. doi:10.1111/j.1469-0691.2011.03497.x
  • Tseng IL, Liu YM, Wang SJ, et al. Emergence of carbapenemase producing klebsiella pneumonia and spread of KPC-2 and KPC-17 in Taiwan: a nationwide study from 2011 to 2013. PLoS One. 2015;10(9):e0138471. doi:10.1371/journal.pone.013847126384242
  • Bowers JR, Kitchel B, Driebe EM, et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae Pandemic. PLoS One. 2015;10(7):e0133727. doi:10.1371/journal.pone.013372726196384
  • Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–696. doi:10.1016/j.tim.2014.09.00325304194
  • Chen L, Mathema B, Pitout JD, DeLeo FR, Kreiswirth BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio. 2014;5(3):e0135501314. doi:10.1128/mBio.01355-14
  • Kurupati P, Chow C, Kumarasinghe G, Poh CL. Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR. J Clin Microbiol. 2004;42:1337–1340. doi:10.1128/JCM.42.3.1337-1340.200415004113
  • Schlesinger J, Navon-Venezia S, Chmelnitsky I, et al. Extended-spectrum beta-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. Antimicrob Agents Chemother. 2005;49:1150–1156. doi:10.1128/AAC.49.3.1150-1156.200515728917
  • Krishnamurthy V, Vijaykumar G, Kumar S, Prashanth H, Prakash R, Nagaraj E. Phenotypic and genotypic methods for detection of extended spectrum β lactamase producing Escherichia coli and Klebsiella pneumoniae isolated from ventilator associated pneumonia. J Clin Diagn Res. 2013;7:1975.24179913
  • Gootz TD, Lescoe MK, Dib-Hajj F, et al. Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob Agents Chemother. 2009;53:1998–2004. doi:10.1128/AAC.01355-0819258268
  • Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother. 2006;59:321–322. doi:10.1093/jac/dkl48117185300
  • Huang T-W, Chen T-L, Chen Y-T, et al. Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS One. 2013;8:e62774. doi:10.1371/journal.pone.006277423658651
  • Poirel L, Castanheira M, Carrër A, et al. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob Agents Chemother. 2011;55:2546–2551. doi:10.1128/AAC.00022-1121422200
  • Wang A, Yang Y, Lu Q, et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis. 2008;8:68. doi:10.1186/1471-2334-8-6818498643
  • Bokaeian M, Saeidi S, Shahi Z, Kadaei V. TetA and tetB Genes in Klebsiella pneumoniae isolated from clinical samples. Gene, Cell and Tissue 1. 2014;1. doi:10.17795/gct-18152
  • Frank T, Gautier V, Talarmin A, Bercion R, Arlet G. Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chemother. 2007;59:742–745. doi:10.1093/jac/dkl53817350987