142
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Molecular Investigations of Linezolid Resistance in Enterococci OptrA Variants from a Hospital in Shanghai

, , , &
Pages 2711-2716 | Published online: 04 Aug 2020

References

  • Leach KL, Brickner SJ, Noe MC. Linezolid, the first oxazolidinone antibacterial agent. Ann N Y Acad Sci. 2011;1222(1):49–54. doi:10.1111/j.1749-6632.2011.05962.x21434942
  • Cattoir V, Giard J-C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Rev Anti Infect Ther. 2014;12:239–248. doi:10.1586/14787210.2014.87088624392717
  • Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist. 2018;13:11–19. doi:10.1016/j.jgar.2017.10.01829101082
  • Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12:1221–1236. doi:10.1586/14787210.2014.95609225199988
  • Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. Emergence of a plasmid-borne multidrμg resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother. 2017;72:1581–1588. doi:10.1093/jac/dkx02328186558
  • Franois G, Mohamed S, Loren D, et al. Molecular and functional analysis of the novel cfr(D) linezolid resistance gene identified in Enterococcus faecium. J Antimicrob Chemother. 2020. doi:10.1093/jac/dkaa125
  • Mendes RE, Deshpande LM, Jones RN. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat. 2014;17:1–12. doi:10.1016/j.drup.2014.04.00224880801
  • Wang Y, Lv Y, Cai J, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in enterococcus faecalis and enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70:2182. doi:10.1093/jac/dkv11625977397
  • Antonelli A, D’Andrea MM, Brenciani A, et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. 2018;73:1763–1769. doi:10.1093/jac/dky08829635422
  • Sharkey LK, Edwards TA, O’Neill AJ. ABC-F proteins mediate antibiotic resistance throμgh ribosomal protection. Mbio. 2016;7:e01975. doi:10.1128/mBio.01975-1527006457
  • Wang Y, Li X, Wang Y, Schwarz S, Shen J, Xia X. Intracellular accumulation of linezolid and florfenicol in optrA-producing enterococcus faecalis and staphylococcus aureus. Molecules. 2018;23:3195. doi:10.3390/molecules23123195
  • Zhong XB, Xiang H, Wang TD, et al. A novel inhibitor of the new antibiotic resistance protein OptrA. Chem Biol Drug Des. 2018;92:1458–1467. doi:10.1111/cbdd.1331129671947
  • Cui L, Wang Y, Lv Y, et al. Nationwide surveillance of novel oxazolidinone resistance gene optrA in enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother. 2016;60:7490–7493. doi:10.1128/AAC.01256-1627645239
  • Wang L, He Y, Xia Y, Wang H, Liang S. Investigation of mechanism and molecular epidemiology of linezolid-resistant enterococcus faecalis in China. Infect Genet Evol. 2014;26:14–19. doi:10.1016/j.meegid.2014.05.00124815727
  • Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of enterococcus faecalis. Antimicrob Agents Chemother. 2012;56:3917–3922. doi:10.1128/AAC.00419-1222491691
  • Bourgeois-Nicolaos N, Massias L, Couson B, Butel MJ, Andremont A, Doucet- Populaire F. Dose dependence of emergence of resistance to linezolid in enterococcus faecalis in vivo. J Infect Dis. 2007;195:1480–1488. doi:10.1086/51387617436228
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Guiton PS, Hung CS, Kline KA, et al. Contribution of autolysin and sortase A during enterococcus faecalis DNA-dependent biofilm development. Infect Immun. 2009;77:3626–3638. doi:10.1128/IAI.00219-0919528211
  • Dunny GM, Brown BL, Clewell DB. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA. 1978;75:3479–3483. doi:10.1073/pnas.75.7.347998769
  • Zheng JX, Bai. B, Lin ZW, et al. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J Med Microbiol. 2017. doi:10.1099/jmm.0.000647
  • Zhou WQ, Gao S, Xu HJ, et al. Distribution of the optrA gene in enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist. 2019;17:180–186. doi:10.1016/j.jgar.2019.01.00130641287
  • Hao W, Shan X, Li D, Schwarz S, Zhang SM, Li XS. Analysis of a poxtA- and optrA-co-carrying conjμgative multiresistance plasmid from Enterococcus faecalis. J Antimicrob Chemother. 2019;70:1771–1775. doi:10.1093/jac/dkz109