416
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Novel Carbapenem-Resistant Klebsiella pneumoniae ST147 Coharboring blaNDM-1, blaOXA-48 and Extended-Spectrum β-Lactamases from Pakistan

ORCID Icon, , ORCID Icon, &
Pages 2105-2115 | Published online: 02 Jul 2020

References

  • Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–5884. doi:10.1128/AAC.01019-1526169401
  • Davarcı İ, Şenbayrak S, Aksaray S, Koçoğlu ME, Kuşkucu MA, Samastı M. Molecular epidemiology of carbapenem-resistant klebsiella pneumoniae isolates. Anatol Clin. 2019;24(1):1–7.
  • Ye Y, Xu L, Han Y, Chen Z, Liu C, Ming L. Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Exp Ther Med. 2018;15(1):1143–1149. doi:10.3892/etm.2017.548529399114
  • Durdu B, Hakyemez IN, Bolukcu S, Okay G, Gultepe B, Aslan T. Mortality markers in nosocomial Klebsiella pneumoniae bloodstream infection. Springerplus. 2016;5(1):1892. doi:10.1186/s40064-016-3580-827843749
  • Organization WH. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization; 2014.
  • Jia X, Dai W, Ma W, et al. Carbapenem-resistant E. cloacae in Southwest China: molecular analysis of resistance and risk factors for infections caused by NDM-1-producers. Front Microbiol. 2018;9:658. doi:10.3389/fmicb.2018.0065829670607
  • Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J Infect Chemother. 2017;23(1):1–11. doi:10.1016/j.jiac.2016.09.00827769646
  • van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4):460–469. doi:10.1080/21505594.2016.122234327593176
  • Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.27379038
  • Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66(8):1290–1297. doi:10.1093/cid/cix89329165604
  • Nahid F, Zahra R, Sandegren L. A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. PLoS One. 2017;12(12):e0189438. doi:10.1371/journal.pone.018943829220374
  • Sattar H, Toleman M, Nahid F, Zahra R. Co-existence of blaNDM-1 and blaKPC-2 in clinical isolates of Klebsiella pneumoniae from Pakistan. J Infect Chemother. 2016;28(4):346–349. doi:10.1179/1973947814Y.0000000223
  • Willemsen I, van Esser J, Kluytmans-van den Bergh M, Kluytmans-van den Bergh M, et al. Retrospective identification of a previously undetected clinical case of OXA-48-producing K. pneumoniae and E. coli: the importance of adequate detection guidelines. Infection. 2016;44(1):107–110. doi:10.1007/s15010-015-0805-726062812
  • Duman Y, Ersoy Y, Gursoy N, Altunisik Toplu S, Otlu B. A silent outbreak due to Klebsiella pneumoniae that co-produced NDM-1 and OXA-48 carbapenemases, and infection control measures. Iran J Basic Med Sci. 2020;23(1):46–50. doi:10.22038/IJBMS.2019.35269.840032405347
  • Seiffert SN, Marschall J, Perreten V, Carattoli A, Furrer H, Endimiani A. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents. 2014;44(3):260–262. doi:10.1016/j.ijantimicag.2014.05.00825123809
  • Xie L, Dou Y, Zhou K, et al. Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a Klebsiella pneumoniae isolate in China. Front Microbiol. 2017;8:133. doi:10.3389/fmicb.2017.0013328210248
  • Dortet L, Poirel L, Al Yaqoubi F, Nordmann P. NDM-1, OXA-48 and OXA-181 carbapenemase-producing enterobacteriaceae in sultanate of Oman. Clin Microbiol Infect. 2012;18(5):E144–E148. (). doi:10.1111/j.1469-0691.2012.03796.x22404169
  • Wayne P. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. Clinical and Laboratory Standards Institute; 2018.
  • Martzy R, Bica-Schröder K, Pálvölgyi ÁM, et al. Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-50246-530626917
  • Brolund A, Rajer F, Giske CG, Melefors Ö, Titelman E, Sandegren L. Dynamics of resistance plasmids in extended-spectrum-β-lactamase-producing Enterobacteriaceae during postinfection colonization. Antimicrob Agents Chemother. 2019;63(4):e02201–e02218. doi:10.1128/AAC.02201-1830745391
  • Carloni E, Andreoni F, Omiccioli E, Villa L, Magnani M, Carattoli A. Comparative analysis of the standard PCR-Based Replicon Typing (PBRT) with the commercial PBRT-KIT. Plasmid. 2017;90:10–14. doi:10.1016/j.plasmid.2017.01.00528137396
  • Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153–163. doi:10.1016/S1473-3099(16)30257-227866944
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919–1929. doi:10.1038/s41564-019-0492-831358985
  • Guo L, An J, Ma Y, et al. Nosocomial outbreak of OXA-48-producing Klebsiella pneumoniae in a Chinese hospital: clonal transmission of ST147 and ST383. PLoS One. 2016;11(8).
  • Qamar MU, Walsh TR, Toleman MA, et al. Dissemination of genetically diverse NDM-1,-5,-7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. Future Microbiol. 2019;14(8):691–704. doi:10.2217/fmb-2019-001231148474
  • Tekeli A, Dolapci İ, Evren E, Oguzman E, Karahan ZC. Characterization of Klebsiella pneumoniae Coproducing KPC and NDM-1 Carbapenemases from Turkey. Microb Drug Resist. 2019;26:118–125.31539303
  • Masseron A, Poirel L, Ali BJ, Syed M, Nordmann P. Molecular characterization of multidrug-resistance in Gram-negative bacteria from the Peshawar teaching hospital, Pakistan. New Microbes New Infect. 2019;32:100605. doi:10.1016/j.nmni.2019.10060531709068
  • Lomonaco S, Crawford MA, Lascols C, et al. Resistome of carbapenem-and colistin-resistant Klebsiella pneumoniae clinical isolates. PLoS One. 2018;13(6):e0198526. doi:10.1371/journal.pone.019852629883490
  • Ejaz H, Wang N, Wilksch JJ, et al. Phylogenetic analysis of Klebsiella pneumoniae from hospitalized children, Pakistan. Emerg Infect Dis. 2017;23(11):1872. doi:10.3201/eid2311.17083329048298
  • Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-Neyestanaki D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist. 2019;12:45. doi:10.2147/IDR.S18699430613156
  • Gamal D, Fernández-Martínez M, Salem D, et al. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int J Infect Dis. 2016;43:17–20. doi:10.1016/j.ijid.2015.12.00326686939
  • Samonis G, Maraki S, Karageorgopoulos D, Vouloumanou E, Falagas M. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012;31(5):695–701. doi:10.1007/s10096-011-1360-521805292
  • Sabir R, Alvi SFD, Fawwad A. Antimicrobial susceptibility pattern of aerobic microbial isolates in a clinical laboratory in Karachi-Pakistan. Pak J Med Sci. 2013;29(3):851. doi:10.12669/pjms.293.318724353642
  • Nahid F, Khan AA, Rehman S, Zahra R. Prevalence of metallo-β-lactamase NDM-1-producing multi-drug resistant bacteria at two Pakistani hospitals and implications for public health. J Infect Public Health. 2013;6(6):487–493. doi:10.1016/j.jiph.2013.06.00624094832
  • Demir Y, Zer Y, Karaoglan I. Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Pak J Pharm Sci. 2015;28.
  • Wailan A, Paterson D. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti Infect Ther. 2014;12(1):91–115. doi:10.1586/14787210.2014.85675624308710
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602. doi:10.1016/S1473-3099(10)70143-220705517
  • Solgi H, Badmasti F, Giske CG, Aghamohammad S, Shahcheraghi F. Molecular epidemiology of NDM-1-and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J Antimicrob Chemother. 2018;73(6):1517–1524. doi:10.1093/jac/dky08129518198
  • Lixandru BE, Cotar AI, Straut M, et al. Carbapenemase-producing Klebsiella pneumoniae in Romania: a six-month survey. PLoS One. 2015;10(11):e0143214. doi:10.1371/journal.pone.014321426599338
  • Jamal WY, Albert MJ, Khodakhast F, Poirel L, Rotimi VO. Emergence of new sequence type OXA-48 carbapenemase-producing Enterobacteriaceae in Kuwait. Microb Drug Resist. 2015;21(3):329–334. doi:10.1089/mdr.2014.012325551428
  • Rahman S, Hussain MA, Murtaza A, et al. How ESBL-and carbapenemase-producing genes are mobilized-analysis of escherichia coli isolates recovered from poultry retail meat in district mardan KPK Pakistan. Paper presented at: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)2019.
  • Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–275. doi:10.1093/femsre/fux01328521338
  • Souza RD, Pinto NA, Hwang I, et al. Molecular Epidemiology and Resistome Analysis of Multidrug-Resistant ST11 Klebsiella Pneumoniae Strain Containing Multiple Copies of Extended-Spectrum Β-Lactamase Genes Using Whole-Genome Sequencing. 2017.
  • Damjanova I, Toth A, Paszti J, et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type β-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005—the new ‘MRSAs’? J Antimicrob Chemother. 2008;62(5):978–985. doi:10.1093/jac/dkn28718667450
  • Samuelsen Ø, Toleman M, Hasseltvedt V, et al. Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clin Microbiol Infect. 2011;17(12):1811–1816. doi:10.1111/j.1469-0691.2011.03532.x21595797
  • Grami R, Mansour W, Ben Haj Khalifa A, et al. Emergence of ST147 Klebsiella pneumoniae producing OXA-204 carbapenemase in a University Hospital, Tunisia. Microb Drug Resist. 2016;22(2):137–140. doi:10.1089/mdr.2014.027826447939
  • Wang X, Xu X, Li Z, et al. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb Drug Resist. 2014;20(2):144–149. doi:10.1089/mdr.2013.010024199986
  • Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56(1):559–562. doi:10.1128/AAC.05289-1122083465
  • Bonnin RA, Poirel L, Carattoli A, Nordmann P. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PLoS One. 2012;7(4):e34752. doi:10.1371/journal.pone.003475222511964
  • Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(6):2227–2238. doi:10.1128/AAC.01707-0819307361
  • Erdem F, Oncul O, Aktas Z. Characterization of resistance genes and polymerase chain reaction-based replicon typing in carbapenem-resistant klebsiella pneumoniae. Microb Drug Resist. 2019;25(4):551–557. doi:10.1089/mdr.2018.023130457928
  • Sartor AL, Raza MW, Abbasi SA, et al. Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan. Antimicrob Agents Chemother. 2014;58(9):5589–5593. doi:10.1128/AAC.02425-1424982081
  • Chander Y, Ramakrishnan M, Jindal N, Hanson K, Goyal SM. Differentiation of Klebsiella pneumoniae and K. oxytoca by multiplex polymerase chain reaction. Int J Appl Res Vet M. 2011;9(2):138.
  • Rajivgandhi G, Maruthupandy M, Ramachandran G, Priyanga M, Manoharan N. Detection of ESBL genes from ciprofloxacin resistant Gram negative bacteria isolated from urinary tract infections (UTIs). Front Lab Med. 2018;2(1):5–13. doi:10.1016/j.flm.2018.01.001
  • Tada T, Shrestha B, Miyoshi-Akiyama T, et al. NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrob Agents Chemother. 2014;58(10):6302–6305. doi:10.1128/AAC.03355-1425092693
  • Candan ED, Aksöz N. Escherichia coli: characteristics of carbapenem resistance and virulence factors. Braz Arch Biol Technol. 2017;60.
  • Toleman MA, Bugert JJ, Nizam SA. Extensively drug-resistant New Delhi metallo-β-lactamase–encoding bacteria in the environment, Dhaka, Bangladesh, 2012. Emerg Infect Dis. 2015;21(6):1027. doi:10.3201/eid2106.14157825989320