212
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Antimicrobial Susceptibility of Mycobacterium abscessus Complex Clinical Isolates from a Chinese Tertiary Hospital

, , , , , , , & show all
Pages 2001-2010 | Published online: 26 Jun 2020

References

  • Griffith DE, Girard WM, Wallace RJ Jr. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis. 1993;147:1271–1278. doi:10.1164/ajrccm/147.5.12718484642
  • Lee MR, et al. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21:1638–1646. doi:10.3201/2109.14163426295364
  • Leao SC, Tortoli E, Euzeby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol. 2011;61:2311–2313. doi:10.1099/ijs.0.023770-021037035
  • Jarand J, Levin A, Zhang L, et al. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52:565–571. doi:10.1093/cid/ciq23721292659
  • Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–134. doi:10.1016/j.ijid.2016.03.00626976549
  • Griffith DE, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416. doi:10.1164/rccm.200604-571ST17277290
  • Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53:1367–1376. doi:10.1128/AAC.01275-0819171799
  • Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012;67:810–818. doi:10.1093/jac/dkr57822290346
  • Richard M, Gutierrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother. 2020;64. doi:10.1128/AAC.01879-19.
  • Aziz DB, Go ML, Dick T. Rifabutin suppresses inducible clarithromycin resistance in Mycobacterium abscessus by blocking induction of whiB7 and erm41. Antibiotics. 2020;9. doi:10.3390/antibiotics9020072.
  • Wallace RJ Jr. et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother. 1996;40:1676–1681. doi:10.1128/AAC.40.7.16768807061
  • Soroka D, et al. Characterization of broad-spectrum Mycobacterium abscessus class A beta-lactamase. J Antimicrob Chemother. 2014;69:691–696. doi:10.1093/jac/dkt41024132992
  • Lefebvre AL, et al. Inhibition of the beta-Lactamase BlaMab by Avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.02440-16
  • Rahme C, Butterfield JM, Nicasio AM, Lodise TP. Dual beta-lactam therapy for serious Gram-negative infections: is it time to revisit? Diagn Microbiol Infect Dis. 2014;80:239–259. doi:10.1016/j.diagmicrobio.2014.07.00725308565
  • Soroka D, et al. Inhibition of beta-lactamases of mycobacteria by avibactam and clavulanate. J Antimicrob Chemother. 2017;72:1081–1088. doi:10.1093/jac/dkw54628039278
  • Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. Mycobacterium abscessus and beta-Lactams: emerging insights and potential opportunities. Front Microbiol. 2018;9:2273. doi:10.3389/fmicb.2018.0227330319581
  • Yu XL, et al. Identification and characterization of non-tuberculous mycobacteria isolated from tuberculosis suspects in Southern-central China. PLoS One. 2014;9:e114353. doi:10.1371/journal.pone.011435325463697
  • Macheras E, et al. Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. J Clin Microbiol. 2009;47:2596–2600. doi:10.1128/JCM.00037-0919515839
  • Nie W, Duan H, Huang H, Lu Y, Chu N. Species identification and clarithromycin susceptibility testing of 278 clinical nontuberculosis Mycobacteria Isolates. Biomed Res Int. 2015;506598. doi:10.1155/2015/50659826146620
  • Maurer FP, Ruegger V, Ritter C, Bloemberg GV, Bottger EC. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J Antimicrob Chemother. 2012;67:2606–2611. doi:10.1093/jac/dks27922833642
  • Institute CA, L S. Susceptibility testing of Mycobacteria, Nocardiae, and other aerobic actinomycetes second edition: approved standard M24-A2. CLSI. 2011 Wayne, PA, USA.
  • Pandey R, et al. Dual beta-Lactam combinations highly active against Mycobacterium abscessus Complex In Vitro. mBio. 2019;10. doi:10.1128/mBio.02895-18
  • Lee MC, et al. Antimicrobial resistance in Mycobacterium abscessus complex isolated from patients with skin and soft tissue infections at a tertiary teaching hospital in Taiwan. J Antimicrob Chemother. 2017;72:2782–2786. doi:10.1093/jac/dkx21229091186
  • Kusuki M, et al. Determination of the antimicrobial susceptibility and molecular profile of clarithromycin resistance in the Mycobacterium abscessus complex in Japan by variable number tandem repeat analysis. Diagn Microbiol Infect Dis. 2018;91:256–259. doi:10.1016/j.diagmicrobio.2018.02.00829550059
  • Ananta P, et al. Analysis of drug-susceptibility patterns and gene sequences associated with clarithromycin and amikacin resistance in serial Mycobacterium abscessus isolates from clinical specimens from Northeast Thailand. PLoS One. 2018;13:e0208053. doi:10.1371/journal.pone.020805330496270
  • Brown-Elliott BA, Wallace R, J Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev. 2002;15:716–746. doi:10.1128/cmr.15.4.716-746.200212364376
  • Mougari F, et al. Standardized interpretation of antibiotic susceptibility testing and resistance genotyping for Mycobacterium abscessus with regard to subspecies and erm41 sequevar. J Antimicrob Chemother. 2016;71:2208–2212. doi:10.1093/jac/dkw13027147307
  • Li YM, et al. Prevalence and antimicrobial susceptibility of Mycobacterium abscessus in a general hospital, China. Biomed Environ Sci. 2016;29:85–90. doi:10.3967/bes2016.00927003165
  • Chua KY, Bustamante A, Jelfs P, Chen SC, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales, Australia. Pathology. 2015;47:678–682. doi:10.1097/PAT.000000000000032726517625
  • Shen Y, et al. In vitro susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum isolates to 30 antibiotics. Biomed Res Int. 2018:4902941. doi:10.1155/2018/4902941.30687747
  • Aono A, et al. Antimicrobial susceptibility testing of Mycobacteroides (Mycobacterium) abscessus complex, Mycolicibacterium (Mycobacterium) fortuitum, and Mycobacteroides (Mycobacterium) chelonae. J Infect Chemother. 2019;25:117–123. doi:10.1016/j.jiac.2018.10.01030447882
  • Park S, et al. In vitro antimicrobial susceptibility of Mycobacterium abscessus in Korea. J Korean Med Sci. 2008;23:49–52. doi:10.3346/jkms.2008.23.1.4918303198
  • Yoshida S, et al. Further isolation of Mycobacterium abscessus subsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents. 2013;42:226–231. doi:10.1016/j.ijantimicag.2013.04.02923850022
  • Wallace RJ Jr, Brown-Elliott BA, Ward SC, et al. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2001;45:764–767. doi:10.1128/AAC.45.3.764-767.200111181357
  • Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect. 2016;72:324–331. doi:10.1016/j.jinf.2015.12.00726723913
  • Park J, Cho J, Lee CH, Han SK, Yim JJ. Progression and Treatment outcomes of lung disease caused by mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis. 2017;64:301–308. doi:10.1093/cid/ciw72328011609
  • Bastian S, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother. 2011;55:775–781. doi:10.1128/AAC.00861-1021135185
  • Lee SH, et al. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med. 2014;34:31–37. doi:10.3343/alm.2014.34.1.3124422193
  • Li B, et al. Relationship between antibiotic susceptibility and genotype in Mycobacterium abscessus clinical isolates. Front Microbiol. 2017;8:1739. doi:10.3389/fmicb.2017.0173928959242
  • Hanson KE, Slechta ES, Muir H, Barker AP. Rapid molecular detection of inducible macrolide resistance in Mycobacterium chelonae and M. abscessus strains: a replacement for 14-day susceptibility testing? J Clin Microbiol. 2014;52:1705–1707. doi:10.1128/JCM.03464-1324554745
  • Kim HY, et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol. 2010;54:347–353. doi:10.1111/j.1348-0421.2010.00221.x20536733
  • Mougari F, et al. Selection of resistance to clarithromycin in Mycobacterium abscessus subspecies. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.00943-16
  • Kaushik A, Ammerman NC, Parrish NM, Nuermberger EL. New beta-Lactamase inhibitors nacubactam and zidebactam improve the in vitro activity of beta-Lactam antibiotics against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63. doi:10.1128/AAC.00733-19.