534
Views
34
CrossRef citations to date
0
Altmetric
Original Research

The Antibacterial Activity and Mechanism of Action of Luteolin Against Trueperella pyogenes

, , , , , , & show all
Pages 1697-1711 | Published online: 10 Jun 2020

References

  • Duarte VD, Dias RS, Kropinski AM, et al. A t4virus prevents biofilm formation by Trueperella pyogenes. Vet Microbiol. 2018;218:45–51. doi:10.1016/j.vetmic.2018.03.02529685220
  • Huang T, Song XH, Zhao KL, et al. Quorum-sensing molecules N-acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model. Vet Microbiol. 2018;213:89–94. doi:10.1016/j.vetmic.2017.11.02929292009
  • Zastempowska E, Lassa H. Genotypic characterization and evaluation of an antibiotic resistance of Trueperella pyogenes (Arcanobacterium pyogenes) isolated from milk of dairy cows with clinical mastitis. Vet Microbiol. 2012;161(1–2):153–158. doi:10.1016/j.vetmic.2012.07.01822868181
  • Ribeiro MG, Risseti RM, Bolaños CAD, et al. Trueperella pyogenes multispecies infections in domestic animals: a retrospective study of 144 cases (2002 to 2012). Vet Q. 2015;35(2):82–87. doi:10.1080/01652176.2015.102266725793626
  • Jost BH, Billington SJ. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie Van Leeuwenhoek. 2005;88(2):87–102. doi:10.1007/s10482-005-2316-516096685
  • Rzewuska M, Stefańska I, Osińska B, et al. Phenotypic characteristics and virulence genotypes of Trueperella (Arcanobacterium) pyogenes strains isolated from European bison (Bison bonasus). Vet Microbiol. 2012;160(1–2):69–76. doi:10.1016/j.vetmic.2012.05.00422658663
  • Galán-Relaño Á, Gómez-Gascón L, Luque I, et al. Antimicrobial susceptibility and genetic characterization of Trueperella pyogenes isolates from pigs reared under intensive and extensive farming practices. Vet Microbiol. 2019;232:89–95. doi:10.1016/j.vetmic.2019.04.01131030851
  • Zhang DX, Zhao JC, Wang QX, et al. Trueperella pyogenes, isolated from dairy cows with endometritis in Inner Mongolia, China: tetracycline susceptibility and tetracycline-resistance gene distribution. Microb Pathog. 2017;105:51–56. doi:10.1016/j.micpath.2017.02.01028188901
  • Rzewuska M, Czopowicz M, Gawryś M, Markowska-Daniel I, Bielecki W. Relationships between antimicrobial resistance, distribution of virulence factor genes and the origin of Trueperella pyogenes isolated from domestic animals and European bison (Bison bonasus). Microb Pathog. 2016;96:35–41. doi:10.1016/j.micpath.2016.05.00127154538
  • Martelli G, Giacomini D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem. 2018;158:91–105. doi:10.1016/j.ejmech.2018.09.00930205261
  • Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018;225:342–358. doi:10.1016/j.jep.2018.05.01929801717
  • Rungsung S, Singh TU, Rabha DJ, et al. Luteolin attenuates acute lung injury in experimental mouse model of sepsis. Cytokine. 2018;110:333–343. doi:10.1016/j.cyto.2018.03.04229655568
  • Fan WC, Qian SH, Qian P, Li XM. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016;220:112–116. doi:10.1016/j.virusres.2016.04.02127126774
  • Zhang HX, Chen Y, Xu R, He QY. Nrf2 mediates the resistance of human A549 and HepG2 cancer cells to boningmycin, a new antitumor antibiotic, in vitro through regulation of glutathione levels. Acta Pharmacol Sin. 2018;39(10):1661–1669. doi:10.1038/aps.2018.2130287928
  • Funaro A, Wu X, Song MY, et al. Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin. J Food Sci. 2016;81(5):H1320–H1327. doi:10.1111/1750-3841.1330027095513
  • Zhang RQ, Li DY, Xu TD, et al. Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart. Chin J Integr Med. 2017;23(7):518–527. doi:10.1007/s11655-015-2296-x26956461
  • Sato A, Tamura H. High antiallergic activity of 5,6,4ʹ-trihydroxy-7,8,3ʹ-trimethoxyflavone and 5,6-dihydroxy-7,8,3ʹ,4ʹ-tetramethoxyflavone from eau de cologne mint (Mentha×piperita citrata). Fitoterapia. 2015;102:74–83. doi:10.1016/j.fitote.2015.02.00325704366
  • Lv P-C, Li H-Q, Xue J-Y, Shi L, Zhu H-L. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur J Med Chem. 2009;44(2):908–914. doi:10.1016/j.ejmech.2008.01.01318313801
  • Kim A, Yun JM. Combination treatments with luteolin and fisetin enhance anti-inflammatory effects in high glucose-treated THP-1 cells through histone acetyltransferase/histone deacetylase regulation. J Med Food. 2017;20(8):782–789. doi:10.1089/jmf.2017.396828650731
  • Cummins CB, Wang XF, Lopez ON, et al. Luteolin-mediated inhibition of hepatic stellate cell activation via suppression of the STAT3 pathway. Int J Mol Sci. 2018;19(6):1567. doi:10.3390/ijms19061567
  • Abu-Elsaad N, El-Karef A. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in Wistar rats. Inflammation. 2017;41(1):221–231. doi:10.1007/s10753-017-0680-8
  • Yao ZH, Yao XL, Zhang Y, Zhang SF, Hu JC. Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation. Neurochem Res. 2018;43(4):806–820. doi:10.1007/s11064-018-2482-229392519
  • Huang LM, Jin KT, Lan HR. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019;17(4):3842–3850. doi:10.3892/ol.2019.1005230930986
  • Kitakaze T, Makiyama A, Samukawa Y, Jiang S, Yamashita Y, Ashida H. A physiological concentration of luteolin induces Phase II drug-metabolizing enzymes through the ERK1/2 signaling pathway in HepG2 cells. Arch Biochem Biophys. 2019;663:151–159. doi:10.1016/j.abb.2019.01.01230641047
  • Wang Q, Wang HD, Jia Y, Pan H, Ding H. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol. 2017;79(5):1031–1041. doi:10.1007/s00280-017-3299-428393257
  • Huang XC, Dai SJ, Dai JJ, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial-mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. OncoTargets Ther. 2015;8:2989–3001. doi:10.2147/OTT.S91511
  • Qian W, Liu M, Fu Y, et al. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb Pathog. 2020;142:104056. doi:10.1016/j.micpath.2020.10405632058023
  • Wang Q, Xie MJ. Antibacterial activity and mechanism of Luteolin on Staphylococcus aureus. Acta Microbiol Sin. 2010;50(9):1180–1184.
  • Huang CC, Gao X, Sun TT, et al. The antimicrobial activity of luteolin against four bacteria in vitro. Chin J Vet Sci. 2017;37(8):1558–1561.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, M100. 28th Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Yi LH, Li X, Luo LL, et al. A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii. Food Control. 2018;91:160–169. doi:10.1016/j.foodcont.2018.03.038
  • Diao MM, Qi DP, Xu MM, et al. Antibacterial activity and mechanism of monolauroyl-galactosylglycerol against Bacillus cereus. Food Control. 2018;85:339–344. doi:10.1016/j.foodcont.2017.10.019
  • He N, Wang PQ, Wang PY, Ma CY, Kang WY. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) lam. BMC Complement Altern Med. 2018;18(1):261. doi:10.1186/s12906-018-2317-330257662
  • Zhang NN, Lan WQ, Wang Q, Sun XH, Xie J. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus. Aquacult Fish. 2018;3(4):163–169.
  • Hong W, Zhao YN, Guo YR, et al. PEGylated self-assembled nano-bacitracin a: probing the antibacterial mechanism and real-time tracing of target delivery in vivo. ACS Appl Mater Interfaces. 2018;10(13):10688–10705. doi:10.1021/acsami.8b0013529516722
  • Xiang QS, Kang CD, Niu LY, Zhao DB, Li K, Bai YH. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT-Food Sci Technol. 2018;96:395–401. doi:10.1016/j.lwt.2018.05.059
  • Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J Dairy Sci. 2013;96(6):3471–3487. doi:10.3168/jds.2012-610423567049
  • Chen Y, Zhang YF, Wang XH, Ling JQ, He GH, Shen LR. Antibacterial activity and its mechanisms of a recombinant Funme peptide against Cronobacter sakazakii in powdered infant formula. Food Res Int. 2019;116:258–265. doi:10.1016/j.foodres.2018.08.03030716944
  • Liang SN, Dang QF, Liu CS, et al. Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr Polym. 2018;195:275–287. doi:10.1016/j.carbpol.2018.04.10929804977
  • Wang F, Wei FY, Song CX, et al. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Ind Crops Prod. 2017;109:358–366. doi:10.1016/j.indcrop.2017.08.058
  • Dzoyem JP, Hamamoto H, Ngameni B, Ngadjui BT, Sekimizu K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov Ther. 2013;7(2):66–72.23715504
  • Ma QQ, Dong N, Shan AS, et al. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids. 2012;43:2527–2536. doi:10.1007/s00726-012-1334-722699557
  • Li YQ, Han Q, Feng JL, Tian WL, Mo HZ. Antibacterial characteristics and mechanisms of ε-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control. 2014;43:22–27. doi:10.1016/j.foodcont.2014.02.023
  • Zhang Y, Wu YT, Zheng W, et al. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J Funct Foods. 2017;38:273–279. doi:10.1016/j.jff.2017.09.047
  • Chang L, Wang J, Tong CY, Zhang XZ, Zhao L, Liu XM. Antibacterial mechanism of polyacrylonitrile fiber with organophosphorus groups against Escherichia coli. Fibers Polym. 2016;17(5):721–728. doi:10.1007/s12221-016-5933-x
  • Zhang YT, Feng RZ, Li LX, et al. The antibacterial mechanism of Terpinen-4-ol against Streptococcus agalactiae. Curr Microbiol. 2018;75(9):1214–1220. doi:10.1007/s00284-018-1512-229804206
  • Cui HY, Zhao CT, Lin L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control. 2015;56:128–134. doi:10.1016/j.foodcont.2015.03.026
  • Hu W, Li CZ, Dai JM, Cui HY, Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind Crops Prod. 2019;130:34–41. doi:10.1016/j.indcrop.2018.12.078
  • Zou N, Wang XL, Li GF. Spectroscopic and electrochemical studies on the interaction between luteolin and DNA. J Solid State Electrochem. 2016;20(6):1775–1782. doi:10.1007/s10008-016-3174-y
  • Chen BM, Chen JY, Kao M, Lin JB, Yu MH, Roffler SR. Elevated topoisomerase I activity in cervical cancer as a target for chemoradiation therapy. Gynecol Oncol. 2000;79(2):272–280. doi:10.1006/gyno.2000.594711063656
  • Sullivan DM, Glisson BS, Hodges PK, Smallwood-Kentro S, Ross WE. Proliferation dependence of topoisomerase II mediated drug action. Biochemistry. 1986;25(8):2248–2256. doi:10.1021/bi00356a0603011082
  • Lin L, Gu YL, Li CZ, Vittayapadung S, Cui HY. Antibacterial mechanism of ε-poly-lysine against Listeria monocytogenes and its application on cheese. Food Control. 2018;91:76–84. doi:10.1016/j.foodcont.2018.03.025
  • Cui HY, Zhang CH, Li CZ, Lin L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control. 2018;94:140–146. doi:10.1016/j.foodcont.2018.07.007
  • Lv X, Du J, Jie Y, et al. Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus. World J Microbiol Biotechnol. 2017;33(8):156. doi:10.1007/s11274-017-2320-828702797
  • Ning YW, Yan AH, Yang K, Wang ZX, Li XF, Jia YM. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem. 2017;228:533–540. doi:10.1016/j.foodchem.2017.01.11228317760
  • Liu F, Wang HM, Cao SS, Jiang CG, Hou JC. Characterization of antibacterial activity and mechanisms of two linear derivatives of bactenecin. LWT-Food Sci Technol. 2019;107:89–97. doi:10.1016/j.lwt.2019.02.073
  • Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1(3):1458–1461. doi:10.1038/nprot.2006.23817406435
  • Tague AJ, Putsathit P, Hammer KA, et al. Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies. Eur J Med Chem. 2019;168:386–404. doi:10.1016/j.ejmech.2019.02.01330831407
  • Naing K, Takahashi M, Taniguchi M, Yamagishi A. Interactions of Enantiomeric Ruthenium (II) complexes with polynucleotides as studied by circular dichroism, electric dichroism measurements, and photolysis. Inorg Chem. 1995;34(1):350–356. doi:10.1021/ic00105a054
  • Matsumoto H, Yamashita M, Tahara T, et al. Design, synthesis, and evaluation of DNA topoisomerase II-targeted nucleosides. Bioorg Med Chem. 2017;25(15):4133–4144. doi:10.1016/j.bmc.2017.06.00128619446
  • Hevener KE, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B. 2018;8(6):844–861. doi:10.1016/j.apsb.2018.07.00830505655
  • Aldulaimi OA. Pharmacognosy reviews general overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn Rev. 2017;11(22):123–127. doi:10.4103/phrev.phrev_43_1628989246
  • Saritha K, Rajesh A, Manjulatha K. H.Setty O, Yenugu S. Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R. Br. ex Schult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front Microbiol. 2015;6:577. doi:10.3389/fmicb.2015.0057726106379
  • Schär-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J. 2003;85(6):4076–4092. doi:10.1016/S0006-3495(03)74820-614645095