162
Views
5
CrossRef citations to date
0
Altmetric
Original Research

High Prevalence of 16S rRNA Methyltransferase Genes in Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates Associated with Bloodstream Infections in 11 Chinese Teaching Hospitals

, , , , , , , & show all
Pages 2189-2197 | Published online: 09 Jul 2020

References

  • Gonzalez LS 3rd, Spencer JP. Aminoglycosides: a practical review. Am Family Phy. 1998;58(8):1811–1820.
  • Jiang M, Karasawa T, Steyger PS. Aminoglycoside induced cochleotoxicity: a review. Front Cell Neurosci. 2017;11:308.29062271
  • O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the prevention of aminoglycoside related hearing loss. Front Cell Neurosci. 2017;11:325. doi:10.3389/fncel.2017.0032529093664
  • Iovleva A, Doi Y. Carbapenem resistant enterobacteriaceae. Clin Lab Med. 2017;37(2):303–315. doi:10.1016/j.cll.2017.01.00528457352
  • Yamane K, Wachino J, Doi Y, Kurokawa H, Arakawa Y. Global spread of multiple aminoglycoside resistance genes. Emerging Infect Dis. 2005;11(6):951–953. doi:10.3201/eid1106.04092415963295
  • Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45(1):88–94. doi:10.1086/51860517554708
  • Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249–3256. doi:10.1128/AAC.44.12.3249-3256.200011083623
  • Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):479–487. doi:10.1128/AAC.49.2.479-487.200515673721
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Res Updates. 2010;13(6):151–171. doi:10.1016/j.drup.2010.08.003
  • Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother. 2003;47(8):2565–2571. doi:10.1128/AAC.47.8.2565-2571.200312878520
  • Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infectious Dis Clin North Am. 2016;30(2):523–537. doi:10.1016/j.idc.2016.02.01127208771
  • Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71(4):442–445. doi:10.1016/j.diagmicrobio.2011.08.01622000158
  • CLSI. 2018 CLSI performance standards for antimicrobial susceptibility testing. 28th ed.CLSI supplement M100.Wayne. PA. 2018;2018:320.
  • Wu Q, Zhang Y, Han L, Sun J, Ni Y. Plasmid-mediated 16S rRNA methylases in aminoglycoside-resistant enterobacteriaceae isolates in Shanghai, China. Antimicrob Agents Chemother. 2009;53(1):271–272. doi:10.1128/AAC.00748-0818955532
  • Taylor E, Sriskandan S, Woodford N, Hopkins KL. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing enterobacteriaceae in the UK and Ireland. Int J Antimicrob Agents. 2018;52(2):278–282. doi:10.1016/j.ijantimicag.2018.03.01629596903
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Computational Biol. 2012;19(5):455–477. doi:10.1089/cmb.2012.0021
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644. doi:10.1093/jac/dks26122782487
  • Yu T, He T, Yao H, et al. Prevalence of 16S rRNA methylase gene rmtB among escherichia coli isolated from bovine mastitis in Ningxia, China. Foodborne Pathogens Dis. 2015;12(9):770–777. doi:10.1089/fpd.2015.1983
  • Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–4182. doi:10.1128/JCM.43.8.4178-4182.200516081970
  • Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–2239. doi:10.1128/JCM.33.9.2233-2239.19957494007
  • Nordmann P. Carbapenemase-producing enterobacteriaceae: overview of a major public health challenge. Med Mal Infect. 2014;44(2):51–56. doi:10.1016/j.medmal.2013.11.00724360201
  • Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.27379038
  • Endimiani A, Depasquale JM, Forero S, et al. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrobial Chemother. 2009;64(5):1102–1110. doi:10.1093/jac/dkp327
  • Neuner EA, Yeh JY, Hall GS, et al. Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn Microbiol Infect Dis. 2011;69(4):357–362. doi:10.1016/j.diagmicrobio.2010.10.01321396529
  • Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infection Control Hospital Epidemiol. 2008;29(12):1099–1106. doi:10.1086/592412
  • Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother. 2018;62:2.
  • Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “old” and the “new” antibiotics for MDR gram-negative pathogens: for whom, when, and how. Front Public Health. 2019;7:151. doi:10.3389/fpubh.2019.0015131245348
  • Yu FY, Yao D, Pan JY, et al. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a Chinese teaching hospital. BMC Infect Dis. 2010;10:184. doi:10.1186/1471-2334-10-18420573216
  • Huang J, Deng S, Ren J, Tu J, Ye M, Wang M. Characterization of a blaNDM1harboring plasmid from a Salmonella enterica clinical isolate in China. Mol Med Rep. 2017;16(2):1087–1092. doi:10.3892/mmr.2017.673328627648
  • Galani I, Nafplioti K, Adamou P, Karaiskos I, Giamarellou H, Souli M. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019;19(1):167. doi:10.1186/s12879-019-3801-130770727
  • Lin L, Xiao X, Wang X, Xia M, Liu S. In vitro antimicrobial susceptibility differences between carbapenem-resistant KPC-2-producing and NDM-1-producing Klebsiella pneumoniae in a teaching hospital in Northeast China. Microbial Drug Resist. 2019.
  • Yu F, Wang L, Pan J, et al. Prevalence of 16S rRNA methylase genes in Klebsiella pneumoniae isolates from a Chinese teaching hospital: coexistence of rmtB and armA genes in the same isolate. Diagn Microbiol Infect Dis. 2009;64(1):57–63. doi:10.1016/j.diagmicrobio.2009.01.02019232867
  • Yu X, Zhang W, Zhao Z, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates with focus on antimicrobial resistance. BMC Genomics. 2019;20(1):822. doi:10.1186/s12864-019-6225-931699025
  • Zhang Y, Jin L, Ouyang P, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrobial Chemother. 2019.
  • Zeng L, Deng Q, Zeng T, Liu Y, Zhang J, Cao X. Prevalence of carbapenem-resistant klebsiella pneumoniae infection in southern China: clinical characteristics, antimicrobial resistance, virulence, and geographic distribution. Microb Drug Resist. 2019.
  • Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerging Infect Dis. 2020;26(2):289–297. doi:10.3201/eid2602.19059431961299