175
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Modelling the Measles Outbreak at Hong Kong International Airport in 2019: A Data-Driven Analysis on the Effects of Timely Reporting and Public Awareness

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , ORCID Icon & show all
Pages 1851-1861 | Published online: 17 Jun 2020

References

  • Centre for Health Protection. The collection of measles news press release in March and April of 2019, the Centre for Health Protection (CHP) official website, the Government of the Hong Kong; 2019 Available from: https://www.chp.gov.hk/en/miniweb/press_release/100020.html. Accessed 527, 2020.
  • Centre for Health Protection. The summary report of individual measles cases in Hong Kong in the first half of 2019, the Centre for Health Protection of Hong Kong; 2020 Available from: https://www.chp.gov.hk/files/pdf/daily_update_on_measles_cases_in_2019_eng.pdf. Accessed 527, 2020.
  • Centre for Health Protection. The number of notifiable infectious diseases by month in Hong Kong, the statistics on communicable diseases, the Centre for Health Protection (CHP), the Government of the Hong Kong; 2019 Available from: https://www.chp.gov.hk/en/static/24012.html.
  • Fact sheets of the Hong Kong International Airport (HKIA), the HKIA official website; 2019 Available from: https://www.hongkongairport.com/iwov-resources/file/the-airport/hkia-at-a-glance/facts-figures/HKIA_FactSheet_181220_EN.pdf. Accessed 527, 2020.
  • Measles fact sheet, World Health Organization (WHO). 2019 Available from: https://www.who.int/immunization/diseases/measles/en/.
  • Moss WJ. Measles. Lancet. 2017;390(10111):2490–2502. doi:10.1016/S0140-6736(17)31463-028673424
  • Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis. 2017;17(12):e420–e8. doi:10.1016/S1473-3099(17)30307-928757186
  • World Health Organization. The measles immunization coverage situation report, the Global Health Observatory (GHO), the World Health Organization (WHO); 2019 Available from: https://www.who.int/gho/mdg/child_mortality/situation_trends_measles_immunization/en/.
  • Zhao S. Epidemiology of an unexpected measles outbreak in Hong Kong, from March to April, 2019. Travel Med Infect Dis. 2019;30:133–136. doi:10.1016/j.tmaid.2019.06.00231207312
  • Hon K, Leung AK, Leung K, Chan GC. Measles outbreak at an international airport: a Hong Kong perspective. Hong Kong Med J. 2019;25:331–333. doi:10.12809/hkmj19796231416996
  • Ali ST, Cowling BJ, Lau EH, Fang VJ, Leung GM. Mitigation of Influenza B epidemic with school closures, Hong Kong, 2018. Emerg Infect Dis. 2018;24(11):2071. doi:10.3201/eid2411.18061230334723
  • Cheng VC, Wong S-C, Wong SC, et al. Measles outbreak from Hong Kong International Airport to the hospital due to secondary vaccine failure in healthcare workers. Infection Control Hospital Epidemiol. 2019;40(12):1407–1415. doi:10.1017/ice.2019.278
  • Immunology and vaccine-preventable diseases pink book measles, the Centers for Disease Control and prevention (CDC), the United States of America; 2015 [ Available from: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/meas.pdf. Accessed 527, 2020.
  • Zhao S, Han L, He D, Qin J. Public awareness, news promptness and the measles outbreak in Hong Kong from March to April, 2019. Infectious Dis. 2020;52(4):284–290. doi:10.1080/23744235.2020.1717598
  • Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–516. doi:10.1093/aje/kwh25515353409
  • Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Royal Soc B. 2006;274(1609):599–604. doi:10.1098/rspb.2006.3754
  • Chong KC, Zee BCY, Wang MH. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases. Travel Med Infect Dis. 2018;23:80–86. doi:10.1016/j.tmaid.2018.04.00429653203
  • Fraser C. Estimating individual and household reproduction numbers in an emerging epidemic. PLoS One. 2007;2(8):e758. doi:10.1371/journal.pone.000075817712406
  • Zhao S, Musa SS, Fu H, He D, Qin J. Large-scale Lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall. Epidemiol Infect. 2020;148.
  • Vink MA, Bootsma MCJ, Wallinga J. Serial intervals of respiratory infectious diseases: a systematic review and analysis. Am J Epidemiol. 2014;180(9):865–875. doi:10.1093/aje/kwu20925294601
  • Ali ST, Kadi A, Ferguson NM. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: the impact of holiday-related school closure. Epidemics. 2013;5(4):157–163. doi:10.1016/j.epidem.2013.08.00124267871
  • Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–1512. doi:10.1093/aje/kwt13324043437
  • Earn DJ, Brauer F, van den Driessche P, Wu J. Mathematical Epidemiology. Springer; 2008.
  • He D, Ionides EL, King AA. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J Royal Society Interface. 2009;7(43):271–283. doi:10.1098/rsif.2009.0151
  • Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University Press; 2011.
  • Eichler M. Causal Inference in Time Series Analysis. Maastricht University; 2012.
  • Zhao S, Musa SS, Qin J, He D. Phase-shifting of the transmissibility of macrolide-sensitive and resistant Mycoplasma pneumoniae epidemics in Hong Kong, from 2015 to 2018. Int J Infect Dis. 2019;81:251–253. doi:10.1016/j.ijid.2019.02.03030822543
  • Granger CW. Some recent development in a concept of causality. J Econom. 1988;39(1–2):199–211. doi:10.1016/0304-4076(88)90045-0
  • Ali ST, Wu P, Cauchemez S, et al. Ambient ozone and influenza transmissibility in Hong Kong. Eur Respir J. 2018;51:5. doi:10.1183/13993003.00369-2018
  • Camacho A, Bouhenia M, Alyusfi R, et al. Cholera epidemic in Yemen, 2016–18: an analysis of surveillance data. Lancet Global Health. 2018;6(6):e680–e90. doi:10.1016/S2214-109X(18)30230-429731398
  • Zhao S, Musa SS, Meng J, Qin J, He D. The long-term changing dynamics of dengue infectivity in Guangdong, China, from 2008–2018: a modelling analysis. Trans R Soc Trop Med Hyg. 2020;114(1):62–71. doi:10.1093/trstmh/trz08431638154
  • Zhao S, Musa SS, Qin J, He D. Associations between public awareness, local precipitation, and Cholera in Yemen in 2017. Am J Trop Med Hyg. 2019;101(3):521–524. doi:10.4269/ajtmh.18-101631333154
  • Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16:791–801. doi:10.1097/01.ede.0000181633.80269.4c16222170
  • Luangasanatip N, Hongsuwan M, Limmathurotsakul D, et al. Comparative efficacy of interventions to promote hand hygiene in hospital: systematic review and network meta-analysis. BMJ. 2015;351:h3728. doi:10.1136/bmj.h372826220070
  • Lin Q, Zhao S, Gao D, et al. A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. 2020;93:211–216. doi:10.1016/j.ijid.2020.02.05832145465
  • Gumel AB, Ruan S, Day T, et al. Modelling strategies for controlling SARS outbreaks. Proc Royal Soc London Series B. 2004;271(1554):2223–2232. doi:10.1098/rspb.2004.2800
  • Cui J, Sun Y, Zhu H. The impact of media on the control of infectious diseases. J Dyn Differ Equations. 2008;20(1):31–53. doi:10.1007/s10884-007-9075-0
  • Funk S, Gilad E, Watkins C, Jansen VA. The spread of awareness and its impact on epidemic outbreaks. Proc Nat Acad Sci. 2009;106(16):6872–6877. doi:10.1073/pnas.081076210619332788
  • Zhao S, Stone L, Gao D, et al. Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Ann Transl Med. 2020;8(7):448. doi:10.21037/atm.2020.03.16832395492
  • Funk S, Salathé M, Jansen VA. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J Royal Society Interface. 2010;7(50):1247–1256. doi:10.1098/rsif.2010.0142
  • Verelst F, Willem L, Beutels P. Behavioural change models for infectious disease transmission: a systematic review (2010–2015). J Royal Soc Interface. 2016;13(125):20160820. doi:10.1098/rsif.2016.0820
  • Xiao Y, Tang S, Wu J. Media impact switching surface during an infectious disease outbreak. Sci Rep. 2015;5:7838. doi:10.1038/srep0783825592757
  • Zhao S, Bauch CT, He D. Strategic decision making about travel during disease outbreaks: a game theoretical approach. J Royal Soc Interface. 2018;15(146):20180515. doi:10.1098/rsif.2018.0515
  • He D, Dushoff J, Day T, Ma J, Earn DJ. Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proc Royal Soc B. 2013;280(1766):20131345. doi:10.1098/rspb.2013.1345
  • Zhao S, Stone L, Gao D, He D. Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Negl Trop Dis. 2018;12(1):e0006158. doi:10.1371/journal.pntd.000615829338001
  • Leung GM, Lam TH, Ho LM, et al. The impact of community psychological responses on outbreak control for severe acute respiratory syndrome in Hong Kong. J Epidemiol Community Health. 2003;57(11):857–863. doi:10.1136/jech.57.11.85714600110
  • Lau JT, Yang X, Tsui H, Kim JH. Monitoring community responses to the SARS epidemic in Hong Kong: from day 10 to day 62. J Epidemiol Community Health. 2003;57(11):864–870. doi:10.1136/jech.57.11.86414600111
  • Chiu AP, Lin Q, He D. News trends and web search query of HIV/AIDS in Hong Kong. PLoS One. 2017;12(9):e0185004. doi:10.1371/journal.pone.018500428922376
  • Tang S, Xiao Y, Yang Y, Zhou Y, Wu J, Ma Z. Community-based measures for mitigating the 2009 H1N1 pandemic in China. PLoS One. 2010;5(6):e10911. doi:10.1371/journal.pone.001091120585565