221
Views
12
CrossRef citations to date
0
Altmetric
Original Research

NDM-1 Carbapenemase-Producing Enterobacteriaceae are Highly Susceptible to Ceragenins CSA-13, CSA-44, and CSA-131

, , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3277-3294 | Published online: 28 Sep 2020

References

  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658. doi:10.2147/IDR.S17386730349322
  • Gashaw M, Berhane M, Bekele S, et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: a cross sectional study. Antimicrob Resist Infect Control. 2018;7(1):138. doi:10.1186/s13756-018-0431-030479751
  • Cheng P, Li F, Liu R, et al. Prevalence and molecular epidemiology characteristics of carbapenem-resistant. Infect Drug Resist. 2019;12:2505–2518. doi:10.2147/IDR.S20812231496764
  • Da Silva GJ, Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3(1):18–28. doi:10.4161/viru.3.1.1838222286707
  • Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: detection and Antimicrobial Therapy. Front Microbiol. 2019;10:1823. doi:10.3389/fmicb.2019.0182331481937
  • Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1. Accessed 727, 2020.
  • Biggest Threats and Data, 2019 AR Threats Report; 2019 Available from: https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed 727, 2020.
  • Data from the ECDC Surveillance Atlas - Antimicrobial resistance; 2018 Available from: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc. Accessed 727, 2020.
  • Livorsi DJ, Chorazy ML, Schweizer ML, et al. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob Resist Infect Control. 2018;7(1):55. doi:10.1186/s13756-018-0346-929719718
  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–427. doi:10.1039/C7CS00748E30462112
  • Kong Z, Cai R, Cheng C, et al. First Reported Nosocomial Outbreak Of NDM-5-Producing. Infect Drug Resist. 2019;12:3557–3566. doi:10.2147/IDR.S21894531814744
  • Dane Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów (KORLD), dotyczące pałeczek Enterobacterales wytwarzających karbapenemazy NDM, KPC, VIM i OXA-48 na terenie Polski w latach 2006 – 2018; 2018 Available from: https://korld.nil.gov.pl/pdf/Raport%20KORLD%202019_EL_2.pdf. Accessed 727, 2020.
  • Chmielewska S, Leszczyńska K. Carbapenemase of intestinal rods- the beginning of post-antibiotic era? Post Microb. 2019;58:271–289.
  • Yu X, Zhang W, Zhao Z, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates with focus on antimicrobial resistance. BMC Genomics. 2019;20(1):822. doi:10.1186/s12864-019-6225-931699025
  • Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol. 2019;10:2866. doi:10.3389/fmicb.2019.0286631921046
  • Wnorowska U, Fiedoruk K, Piktel E, et al. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J Nanobiotechnology. 2020;18(1):3. doi:10.1186/s12951-019-0566-z31898542
  • Ding B, Taotofa U, Orsak T, Chadwell M, Savage PB. Synthesis and characterization of peptide-cationic steroid antibiotic conjugates. Org Lett. 2004;6(20):3433–3436. doi:10.1021/ol048845t15387516
  • Ding B, Guan Q, Walsh JP, et al. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. J Med Chem. 2002;45(3):663–669. doi:10.1021/jm010507011806717
  • Durnaś B, Wnorowska U, Pogoda K, et al. Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites. PLoS One. 2016;11(6):e0157242. doi:10.1371/journal.pone.015724227315208
  • Hashemi MM, Mmuoegbulam AO, Holden BS, et al. Susceptibility of Multidrug-Resistant Bacteria, Isolated from Water and Plants in Nigeria, to Ceragenins. Int J Environ Res Public Health. 2018;15(12):12. doi:10.3390/ijerph15122758
  • Bozkurt-Guzel C, Hacioglu M, Savage PB. Investigation of the in vitro antifungal and antibiofilm activities of ceragenins CSA-8, CSA-13, CSA-44, CSA-131, and CSA-138 against Candida species. Diagn Microbiol Infect Dis. 2018;91(4):324–330. doi:10.1016/j.diagmicrobio.2018.03.01429680320
  • Piktel E, Prokop I, Wnorowska U, et al. Ceragenin CSA-13 as free molecules and attached to magnetic nanoparticle surfaces induce caspase-dependent apoptosis in human breast cancer cells via disruption of cell oxidative balance. Oncotarget. 2018;9(31):21904–21920. doi:10.18632/oncotarget.2510529774111
  • Durnaś B, Piktel E, Wątek M, et al. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo. BMC Microbiol. 2017;17(1):167. doi:10.1186/s12866-017-1075-628747178
  • Piktel E, Pogoda K, Roman M, et al. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep. 2017;7(1):44452. doi:10.1038/srep4445228294162
  • Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis. 2019;19(1):369. doi:10.1186/s12879-019-3994-331046689
  • Niemirowicz K, Durnaś B, Tokajuk G, et al. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep. 2017;7(1):4610. doi:10.1038/s41598-017-04653-128676673
  • Labus K. Effective detection of biocatalysts with specified activity by using a hydrogel-based colourimetric assay - β-galactosidase case study. PLoS One. 2018;13(10):e0205532. doi:10.1371/journal.pone.020553230308030
  • Gravel J, Paradis-Bleau C, Schmitzer AR. Adaptation of a bacterial membrane permeabilization assay for quantitative evaluation of benzalkonium chloride as a membrane-disrupting agent. Medchemcomm. 2017;8(7):1408–1413. doi:10.1039/C7MD00113D30108851
  • Niemirowicz K, Piktel E, Wilczewska AZ, et al. Core-shell magnetic nanoparticles display synergistic antibacterial effects against. Int J Nanomedicine. 2016;11:5443–5455. doi:10.2147/IJN.S11370627799768
  • Niemirowicz K, Surel U, Wilczewska AZ, et al. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology. 2015;13(1):32. doi:10.1186/s12951-015-0093-525929281
  • Leszczyńska K, Namiot A, Cruz K, et al. Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J Appl Microbiol. 2011;110(1):229–238. doi:10.1111/j.1365-2672.2010.04874.x20961363
  • Peyclit L, Baron SA, Rolain JM. Drug Repurposing to Fight Colistin and Carbapenem-Resistant Bacteria. Front Cell Infect Microbiol. 2019;9:193. doi:10.3389/fcimb.2019.0019331245302
  • Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol. 2016;7:895.27379038
  • Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics. 2019;8:2.
  • Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections Caused by Carbapenem-Resistant. Front Microbiol. 2019;10:80. doi:10.3389/fmicb.2019.0008030761114
  • Raport Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów Występowanie Enterobacteriaceae (głównie Klebsiella pneumoniae), wytwarzających karbapenemazę New Delhi (NDM) na terenie Polski w okresie I – III kwartał 2017 roku; 2017 Available from: https://korld.nil.gov.pl/pdf/Raport_NDM_18-12-2017_strona.pdf. Accessed 727, 2020.
  • Hacioglu M, Haciosmanoglu E, Birteksoz-Tan AS, Bozkurt-Guzel C, Savage PB. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn Microbiol Infect Dis. 2019;95(3):114863. doi:10.1016/j.diagmicrobio.2019.06.01431471074
  • Ozbek-Celik B, Damar-Celik D, Mataraci-Kara E, Bozkurt-Guzel C, Savage PB. Comparative In Vitro Activities of First and Second-Generation Ceragenins Alone and in Combination with Antibiotics Against Multidrug-Resistant. Antibiotics. 2019;8:3.
  • Hashemi MM, Rovig J, Holden BS, et al. Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. J Antimicrob Chemother. 2018;73(6):1537–1545. doi:10.1093/jac/dky08529635279
  • Bozkurt Guzel C, Oyardi OB, Savage P. Comparative in vitro antimicrobial activities of CSA-142 and CSA-192, second-generation ceragenins, with CSA-13 against various microorganisms. J Chemother. 2018;30(6–8):332–337. doi:10.1080/1120009X.2018.153456730663553
  • Wnorowska U, Watek M, Durnas B, et al. Extracellular DNA as an essential component and therapeutic target of microbial biofilm. Med Stud Studia Medyczne. 2015;31(2):132–138. doi:10.5114/ms.2015.52912
  • Moscoso M, Esteban-Torres M, Menéndez M, García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS One. 2014;9(7):e101037. doi:10.1371/journal.pone.010103725006964
  • Olekson MA, You T, Savage PB, Leung KP. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration. FEBS Open Bio. 2017;7(7):953–967. doi:10.1002/2211-5463.12235
  • Hong Y, Zeng J, Wang X, Drlica K, Zhao X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci U S A. 2019;116(20):10064–10071. doi:10.1073/pnas.190173011630948634
  • Gammoudi I, Mathelie-Guinlet M, Morote F, et al. Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy. Colloids Surf B Biointerfaces. 2016;141:355–364. doi:10.1016/j.colsurfb.2016.02.00626878286
  • Saha S, Savage PB, Bal M. Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant gram-negative bacterial pathogens. J Appl Microbiol. 2008;105(3):822–828. doi:10.1111/j.1365-2672.2008.03820.x18452533