311
Views
13
CrossRef citations to date
0
Altmetric
Review

Targeting Polyamine Metabolism for Control of Human Viral Diseases

, , ORCID Icon & ORCID Icon
Pages 4335-4346 | Published online: 01 Dec 2020

References

  • Davis BM, Rall GF, Schnell MJ. Everything you always wanted to know about rabies virus (but were afraid to ask). Annu Rev Virol. 2015;2(1):451–471. doi:10.1146/annurev-virology-100114-05515726958924
  • Cilliers K, Muller CJF, Page BJ. Human immunodeficiency virus in cadavers: a review. Clin Anat. 2019;32(4):603–610. doi:10.1002/ca.2335830811656
  • Jadav SS, Kumar A, Ahsan MJ, Jayaprakash V. Ebola virus: current and future perspectives. Infect Disord Drug Targets. 2015;15(1):20–31. doi:10.2174/187152651566615032016225925910510
  • Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71–76. doi:10.1016/j.ijsu.2020.02.03432112977
  • Florin L, Lang T. Tetraspanin assemblies in virus infection. Front Immunol. 2018;9:1–9. doi:10.3389/fimmu.2018.0114029403488
  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol. 2015;427(21):3389–3406. doi:10.1016/j.jmb.2015.06.02026156863
  • Igarashi K, Kashiwagi K. Modulation of protein synthesis by polyamines. IUBMB Life. 2015;67(3):160–169. doi:10.1002/iub.136325906835
  • Hesterberg RS, Cleveland JL, Epling-Burnette PK. Role of polyamines in immune cell functions. Med Sci (Basel). 2018;6(22):1–19.
  • Dever TE, Gutierrez E, Shin BS. The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol. 2014;49(5):413–425. doi:10.3109/10409238.2014.93960825029904
  • Puleston DJ, Buck MD, Klein Geltink RI, et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 2019;30(2):352–363.e358. doi:10.1016/j.cmet.2019.05.00331130465
  • Mounce BC, Olsen ME, Vignuzzi M, Connor JH. Polyamines and their role in virus infection. Microbiol Mol Biol Rev. 2017;81(4):e00029–00017. doi:10.1128/MMBR.00029-1728904024
  • Rivadeneyra L, Charó N, Kviatcovsky D, et al. Role of neutrophils in CVB3 infection and viral myocarditis. J Mol Cell Cardiol. 2018;125:149–161. doi:10.1016/j.yjmcc.2018.08.02930393107
  • Han Z, Zhang Y, Huang K, et al. Two coxsackievirus B3 outbreaks associated with hand, foot, and mouth disease in China and the evolutionary history worldwide. BMC Infect Dis. 2019;19(1):1–10. doi:10.1186/s12879-019-4107-z30606108
  • Kicmal TM, Tate PM, Dial CN, et al. Polyamine depletion abrogates enterovirus cellular attachment. J Virol. 2019;1–37.
  • Dial CN, Tate PM, Kicmal TM, Mounce BC. Coxsackievirus B3 responds to polyamine depletion via enhancement of 2A and 3C protease activity. Viruses. 2019;11(403):1–15. doi:10.3390/v11050403
  • Mounce BC, Cesaro T, Moratorio G, et al. Inhibition of polyamine biosynthesis is a broad-spectrum strategy against RNA viruses. J Virol. 2016;90(21):9683–9692. doi:10.1128/JVI.01347-1627535047
  • Chen Z, Li R, Xie Z, et al. IL-6, IL-10 and IL-13 are associated with pathogenesis in children with enterovirus 71 infection. Int J Clin Exp Med. 2014;7(9):2718–2723.25356130
  • Ma Y, Wang X, Zhou X, et al. Poliovirus detection and genetic characteristic from sewage in Heilongjiang province from 2013 to 2016. Jpn J Infect Dis. 2018;71(6):442–447. doi:10.7883/yoken.JJID.2017.33830068885
  • Musso D, DJ G. Zika virus. Clin Microbiol Rev. 2016;29(3):487–524. doi:10.1128/CMR.00072-1527029595
  • Mounce BC, Poirier EZ, Passoni G, et al. Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict zika and chikungunya viruses. Cell Host Microbe. 2016;20(2):167–177. doi:10.1016/j.chom.2016.06.01127427208
  • Routhu NK, Xie Y, Dunworth M, et al. Polymeric prodrugs targeting polyamine metabolism inhibit zika virus replication. Mol Pharm. 2018;1–45.
  • de Weerd NA, Vivian JP, Nguyen TK, et al. Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nat Immunol. 2013;14(9):901–907. doi:10.1038/ni.266723872679
  • Henig N, Avidan N, Mandel I, et al. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells. PLoS One. 2013;8(4):e62366. doi:10.1371/journal.pone.006236623626809
  • Zeisel MB, Felmlee DJ, Baumert TF. Hepatitis C virus entry. Curr Top Microbiol Immunol. 2013;369:87–112.23463198
  • Korovina AN, Tunitskaya VL, Khomutov MA, et al. Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry. 2012;77(10):1413–1422. doi:10.1134/S0006297912100094
  • Smirnova OA, Keinanen TA, Ivanova ON, et al. Hepatitis C virus alters metabolism of biogenic polyamines by affecting expression of key enzymes of their metabolism. Biochem Biophys Res Commun. 2017;483(2):904–909. doi:10.1016/j.bbrc.2017.01.03228082202
  • Masalova OV, Lesnova EI, Samokhvalov EI, et al. Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells. Mol Biol. 2017;51(3):453–464. doi:10.1134/S0026893317030128
  • Chen Y, Tian Z. HBV-induced immune imbalance in the development of HCC. Front Immunol. 2019;10:2048. doi:10.3389/fimmu.2019.0204831507621
  • Mao B, Wang Z, Pi S, et al. Difluoromethylornithine, a decarboxylase 1 inhibitor, suppresses hepatitis B virus replication by reducing hbc protein levels. Front Cell Infect Microbiol. 2020;10:158. doi:10.3389/fcimb.2020.0015832373551
  • Muller DA, Depelsenaire ACI, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017;215(suppl_2):S89–S95. doi:10.1093/infdis/jiw64928403441
  • Pozzi B, Bragado L, Mammi P, et al. Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. Nucleic Acids Res. 2020;48(12):6824–6838. doi:10.1093/nar/gkaa34032432721
  • Wang X, Li S-H, Zhu L, et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat Commun. 2017;8(1):14. doi:10.1038/s41467-017-00024-628446752
  • Klitting R, Roth L, Rey FA, de Lamballerie X. Molecular determinants of yellow fever virus pathogenicity in Syrian golden hamsters: one mutation away from virulence. Emerg Microbes Infect. 2018;7(1):51. doi:10.1038/s41426-018-0053-x29593212
  • Olsen ME, Filone CM, Rozelle D, et al. Polyamines and hypusination are required for ebolavirus gene expression and replication. mBio. 2016;7(4):e00882–00816. doi:10.1128/mBio.00882-1627460797
  • Olsen ME, Cressey TN, Muhlberger E, Connor JH. Differential mechanisms for the involvement of polyamines and hypusinated eif5a in ebola virus gene expression. J Virol. 2018;1–34.
  • Amman BR, Nyakarahuka L, McElroy AK, et al. Marburgvirus resurgence in kitaka mine bat population after extermination attempts, Uganda. Emerg Infect Dis. 2014;20(10):1761–1764. doi:10.3201/eid2010.14069625272104
  • Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13):1231–1239. doi:10.1056/NEJMra140603525806915
  • Guan H, Wang M, Liao C, et al. Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti. PLoS One. 2018;13(3):e0194499. doi:10.1371/journal.pone.019449929554129
  • Mounce BC, Cesaro T, Vlajnić L, et al. Chikungunya virus overcomes polyamine depletion by mutation of nsP1 and the opal stop codon to confer enhanced replication and fitness. J Virol. 2017;91(15):1–45. doi:10.1128/JVI.00344-17
  • Sigei F, Nindo F, Mukunzi S, Ng’ang’a Z, Sang R. Evolutionary analyses of Sindbis virus strains isolated from mosquitoes in Kenya. Arch Virol. 2018;163(9):2465–2469. doi:10.1007/s00705-018-3869-829781064
  • Pietilä MK, Albulescu IC, MJv H, Ahola T. Polyprotein processing as a determinant for in vitro activity of semliki forest virus replicase. Viruses. 2017;9(10):292. doi:10.3390/v9100292
  • Tuomi K, Mantyjarvi R, Raina A. Inhibition of Semliki Forest and herpes simplex virus production in alpha-difluoromethylornithinetreated cells: reversal by polyamines. FEBS Lett. 1980;121(2):292–294. doi:10.1016/0014-5793(80)80365-66257550
  • Tuomi K, Rainat A, Mantyjarvi R. Synthesis of Semliki-Forest virus in polyamine-depleted baby-hamster kidney cells. Biochem Soc. 1982;206:113–119.
  • Nowalk A, Green M. Epstein-barr virus. Microbiol Spectr. 2016;4(3):10.1128/microbiolspec.DMIH1122-0011-2015. doi:10.1128/microbiolspec.DMIH2-0011-2015
  • Casero RA Jr., Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 2007;6(5):373–390.17464296
  • Shi M, Gan Y-J, Davis TO, Scott RS. Downregulation of the polyamine regulator spermidine/spermine N1-acetyltransferase by epstein–barr virus in a Burkitt’s lymphoma cell line. Virus Res. 2013;177(1):11–21. doi:10.1016/j.virusres.2013.07.00423891576
  • Kumru OS, Joshi SB, Thapa P, et al. Characterization of an oncolytic herpes simplex virus drug candidate. J Pharm Sci. 2015;104(2):485–494.25362835
  • Gibson W, Roizman B. Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Nat Acad Sci USA. 1971;68(11):2818–2821. doi:10.1073/pnas.68.11.28185288261
  • Pohjanpelto P, Sekki A, Hukkanen V, Bonsdorff C-HV. Polyamine depletion of cells reduces the infectivity of herpes simplex virus but not the infectivity of virus. Life Sci. 1988;42(20):2011–2018. doi:10.1016/0024-3205(88)90501-22835567
  • Greco A, Callé A, Morfin F, et al. S-adenosyl methionine decarboxylase activity is required for the outcome of herpes simplex virus type 1 infection and represents a new potential therapeutic target. FASEB J. 2005;19(9):1128–1130. doi:10.1096/fj.04-2108fje15863396
  • Lv Y-L, Han -F-F, Gong -L-L, et al. Human cytomegalovirus infection and vascular disease risk: a meta-analysis. Virus Res. 2017;227:124–134. doi:10.1016/j.virusres.2016.09.01027664838
  • Tyms AS, Williamson JD. Inhibitors of polyamine biosynthesis block human cytomegalovirus replication. Nature. 1982;297(5868):690–691. doi:10.1038/297690a06283366
  • Gibson W, Breemen RV, Fields A, Lafemina R, Irmiere A. D,L-alpha-difluoromethylornithine inhibits human cytomegalovirus replication. J Virol. 1984;50(1):145–154. doi:10.1128/JVI.50.1.145-154.19846321786
  • Rodríguez LL. Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res. 2002;85(2):211–219. doi:10.1016/S0168-1702(02)00026-612034487
  • Correa-Giron EP, Allen R, Sulkin SE. The infectivity and pathogenesis of rabiesvirus administered orally. Am J Epidemiol. 1970;91(2):203–215.4906507
  • Linthicum KJ, Britch SC, Anyamba A. Rift valley fever: an emerging mosquito-borne disease. Annu Rev Entomol. 2016;61(1):395–415. doi:10.1146/annurev-ento-010715-02381926982443
  • McJunkin JE, Khan RR, Tsai TF. California-la crosse encephalitis. Infect Dis Clin North Am. 1998;12(1):83–93. doi:10.1016/S0891-5520(05)70410-49494831
  • Mastrodomenico V, Esin JJ, Graham ML, et al. Polyamine depletion inhibits bunyavirus infection via generation of noninfectious interfering virions. J Virol. 2019;93(14):e00530–00519. doi:10.1128/JVI.00530-1931043534
  • Mastrodomenico V, Esin J, Qazi S, et al. Virion-associated polyamines transmit with bunyaviruses to maintain infectivity and promote entry. ACS Infect Dis. 2020;6(9):2490–2501. doi:10.1021/acsinfecdis.0c0040232687697
  • Margolis DM, Archin NM, Latency P. Persistent human immunodeficiency virus infection, and the development of latency reversing agents. J Infect Dis. 2017;215(suppl_3):S111–S118. doi:10.1093/infdis/jiw61828520964
  • Bevec D, Jaksche H, Oft M, et al. Inhibition of HIV-1 replication in lymphocytes by mutants of the rev cofactor eIF-5A. Science. 1996;271(5257):1858–1860. doi:10.1126/science.271.5257.18588596953
  • Hoque M, Hanauske-Abel HM, Palumbo P, et al. Inhibition of HIV-1 gene expression by ciclopirox and deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology. 2009;6(1):90. doi:10.1186/1742-4690-6-9019825182
  • Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ. Translational regulation of HIV-1 replication by HIV-1 rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol. 2011;6(2):308–321. doi:10.1007/s11481-011-9265-821360055
  • Chafekar A, Fielding BC. MERS-CoV: understanding the latest human coronavirus threat. Viruses. 2018;10(2):93.
  • Palacios Cruz M, Santos E, Velázquez Cervantes MA, León Juárez M. COVID-19, a worldwide public health emergency. Rev Clin Esp. 2020.
  • Zhang M, Lyudmila V, Borovikova HW, Metz C, Tracey KJ. Spermine inhibition of monocyte activation and inflammation. Mol Med. 1999;5(9):595–605. doi:10.1007/BF340207210551901
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.