717
Views
33
CrossRef citations to date
0
Altmetric
Review

Quorum Quenching: A Potential Target for Antipseudomonal Therapy

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 2989-3005 | Published online: 24 Aug 2020

References

  • Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Update. 2000;3(4):247–255. doi:10.1054/drup.2000.0152
  • Engel LS, Hill JM, Caballeero AR, Green LC, O’Callaghan RJ, Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem. 1998;273(27):16792. doi:10.1074/jbc.273.27.167929642237
  • Allegretta G, Maurer CK, Eberhard J, et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front Microbiol. 2017;8:924. doi:10.3389/fmicb.2017.0092428596760
  • Holban AM, Bleotu C, Chifiriuc MC, Lazar V. Control of bacterial virulence by cell-to-cell signalling molecules Microbial pathogens and strategies for combating them: science, technology and education. Formatex. 2013;1:978–984.
  • Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil H. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis. 2017;36(11):2043–2051. doi:10.1007/s10096-017-3036-228601970
  • Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother. 2017;93:580–588. doi:10.1016/j.biopha.2017.06.09228686972
  • Gholizadeh P, Ş K, Dao S, et al. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist. 2020;13:1111–1121. doi:10.2147/IDR.S24727132368102
  • El‐Mowafy S, Shaaban M, Abd El Galil K. Sodium ascorbate as a quorum sensing inhibitor of P seudomonas aeruginosa. J Appl Microbiol. 2014;117(5):1388–1399. doi:10.1111/jam.1263125175797
  • Abbas HA, Shaldam MA. Glyceryl trinitrate is a novel inhibitor of quorum sensing in Pseudomonas aeruginosa. Afr Health Sci. 2016;16(4):1109–1117. doi:10.4314/ahs.v16i4.2928479904
  • Guendouze A, Plener L, Bzdrenga J, et al. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol. 2017;8:227. doi:10.3389/fmicb.2017.0022728261183
  • Kordbacheh H, Eftekhar F, Ebrahimi S. Anti-quorum sensing activity of Pistacia atlantica against Pseudomonas aeruginosa PAO1 and identification of its bioactive compounds. Microb Pathog. 2017;110:390–398. doi:10.1016/j.micpath.2017.07.01828712963
  • Starkey M, Lepine F, Maura D, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10(8):e1004321. doi:10.1371/journal.ppat.100432125144274
  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31(2):224–245. doi:10.1016/j.biotechadv.2012.10.00423142623
  • Dong Y-H, Zhang L-H. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005;43(1):101–109.15765063
  • Sifri CD. Quorum sensing: bacteria talk sense. Clin Infect Dis. 2008;47(8):1070–1076. doi:10.1371/journal.pone.013468418781869
  • McDougald D, Rice SA, Kjelleberg S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chem. 2007;387(2):445–453. doi:10.1007/s00216-006-0761-217019574
  • Dean SN, Chung M-C, van Hoek ML. Burkholderia diffusible signal factor signals to Francisella novicida to disperse biofilm and increase siderophore production. Appl Environ Microbiol. 2015;81(20):7057–7066. doi:10.1128/AEM.02165-1526231649
  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77(1):73–111.23471618
  • Choudhary S, Schmidt-Dannert C. Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol. 2010;86(5):1267–1279. doi:10.1007/s00253-010-2521-720306190
  • Xavier KB, Bassler BL. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol. 2003;6(2):191–197. doi:10.1016/S1369-5274(03)00028-612732311
  • Depluverez S, Daled S, De Waele S, et al. Microfluidics-based LC-MS MRM approach for the relative quantification of Burkholderia cenocepacia secreted virulence factors. Rapid Commun Mass Spectrometry. 2018;32(6):469–479. doi:10.1002/rcm.8059
  • Subhadra B, Oh MH, Choi CH Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching. AIMS Microbiol. 2016;2(1):27–41. doi:10.3934/microbiol.2016.1.27
  • Haque S, Ahmad F, Dar SA, et al. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog. 2018;121:293–302. doi:10.1016/j.micpath.2018.05.04629857121
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427. doi:10.1101/cshperspect.a01242723125205
  • Li S, Chen S, Fan J, et al. Anti-biofilm effect of novel thiazole acid analogs against Pseudomonas aeruginosa through IQS pathways. Eur J Med Chem. 2018;145:64–73. doi:10.1016/j.ejmech.2017.12.07629324344
  • Pérez-Pérez M, Jorge P, Pérez Rodríguez G, Pereira MO, Lourenço A. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. Biofouling. 2017;33(2):128–142. doi:10.1080/08927014.2016.127210428121162
  • Fong J, Yuan M, Jakobsen TH, et al. Disulfide bond-containing ajoene analogues as novel quorum sensing inhibitors of Pseudomonas aeruginosa. J Med Chem. 2016;60(1):215–227. doi:10.1021/acs.jmedchem.6b0102527977197
  • Feltner JB, Wolter DJ, Pope CE, et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. MBio. 2016;7(5):e01513–e01516.27703072
  • Sun S, Zhou L, Jin K, Jiang H, He Y-W. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201. Sci Rep. 2016;6(1):30352. doi:10.1038/srep3035227456813
  • Feltner J, Wolter D, Pope C, et al. Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa. MBio. 2016;7(5):e01513–e01516. doi:10.1128/mBio.01513-1627703072
  • Liang H, Deng X, Li X, Ye Y, Wu M. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res. 2014;42(16):10307–10320. doi:10.1093/nar/gku58625034696
  • Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26–41. doi:10.1007/s13238-014-0100-x25249263
  • Qin X, Kräft T, Goycoolea FM. Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids Surf B Biointerfaces. 2018;169:453–461. doi:10.1016/j.colsurfb.2018.05.05429852434
  • Dembitsky VM, AAA Aq, Srebnik M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev. 2010;111(1):209–237. doi:10.1021/cr100093b21171664
  • Kaufmann GF, Sartorio R, Lee S-H, et al. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc. 2006;128(9):2802–2803. doi:10.1021/ja057869816506750
  • Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P. Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs. 2013;11(1):253–265. doi:10.3390/md1101025323344114
  • Ditu L-M, Chifiriuc MC, Bezirtzoglou E, et al. Modulation of virulence and antibiotic susceptibility of enteropathogenic Escherichia coli strains by Enterococcus faecium probiotic strain culture fractions. Anaerobe. 2011;17(6):448–451. doi:10.1016/j.anaerobe.2011.05.01921723403
  • Chifiriuc M-C, Diţu L, Banu O, et al. Subinhibitory concentrations of phenyl lactic acid interfere with the expression of virulence factors in Staphylococcus aureus and Pseudomonas aeruginosa clinical strains. Roum Arch Microbiol Immunol. 2009;68(1):27–33.19507624
  • Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN. Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2009;299(1):100–109. doi:10.1111/j.1574-6968.2009.01739.x19686346
  • Memar MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol. 2017;28(2):63–68. doi:10.1097/MRM.0000000000000100
  • Vadekeetil A, Alexandar V, Chhibber S, Harjai K. Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa. Microb Pathog. 2016;90:98–103. doi:10.1016/j.micpath.2015.11.02426620081
  • Singh BR, Shoeb M, Sharma S, Naqvi A, Gupta VK, Singh BN. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol. 2017;7:93.28386534
  • Song Y, Cai ZH, Lao YM, et al. Antibiofilm activity substances derived from coral symbiotic bacterial extract inhibit biofouling by the model strain Pseudomonas aeruginosa PAO 1. Microb Biotechnol. 2018;11(6):1090–1105. doi:10.1111/1751-7915.1331230298548
  • Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol. 2011;37(2):121–140. doi:10.3109/1040841X.2010.53247921271798
  • Huma N, Shankar P, Kushwah J, et al. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol. 2011;21(10):1001–1011. doi:10.4014/jmb.1105.0505622031023
  • Uroz S, Dessaux Y, Oger P. Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chem Bio Chem. 2009;10(2):205–216. doi:10.1002/cbic.200800521
  • Romero M, A-B M-C, Roca-Rivada A, Cabello AM, Otero A. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol. 2011;75(2):205–217. doi:10.1111/j.1574-6941.2010.01011.x21155853
  • Kang BR, Lee JH, Ko SJ, et al. Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010. Can J Microbiol. 2004;50(11):935–941. doi:10.1139/w04-08315644910
  • Park S-Y, Lee SJ, Oh T-K, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology. 2003;149(6):1541–1550. doi:10.1099/mic.0.26269-012777494
  • Dong Y-H, Xu J-L, Li X-Z, Zhang L-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci. 2000;97(7):3526–3531. doi:10.1073/pnas.97.7.352610716724
  • Liu D, Momb J, Thomas PW, et al. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry. 2008;47(29):7706–7714. doi:10.1021/bi800368y18627129
  • Momb J, Wang C, Liu D, et al. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate modeling and active site mutations. Biochemistry. 2008;47(29):7715–7725. doi:10.1021/bi800370418627130
  • Reimmann C, Ginet N, Michel L, et al. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology. 2002;148(4):923–932. doi:10.1099/00221287-148-4-92311932439
  • Dong W, Zhu J, Guo X, et al. Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618 T and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Sci Rep. 2018;8(1):6013. doi:10.1038/s41598-018-24507-829662232
  • Chen F, Gao Y, Chen X, Yu Z, Li X. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci. 2013;14(9):17477–17500. doi:10.3390/ijms14091747724065091
  • Kusada H, Tamaki H, Kamagata Y, Hanada S, Kimura N. A novel quorum-quenching N-acylhomoserine lactone acylase from Acidovorax sp. strain MR-S7 mediates antibiotic resistance. Appl Environ Microbiol. 2017;83(13):e00080–e00017. doi:10.1128/AEM.00080-1728455333
  • Utari PD, Vogel J, Quax WJ. Deciphering physiological functions of AHL quorum quenching acylases. Front Microbiol. 2017;8:1123. doi:10.3389/fmicb.2017.0112328674525
  • Sio CF, Otten LG, Cool RH, et al. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun. 2006;74(3):1673–1682. doi:10.1128/IAI.74.3.1673-1682.200616495538
  • Park S-Y, Kang H-O, Jang H-S, Lee J-K, Koo B-T, Yum D-Y. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol. 2005;71(5):2632–2641. doi:10.1128/AEM.71.5.2632-2641.200515870355
  • Huang JJ, Han J-I, Zhang L-H, Leadbetter JR. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2003;69(10):5941–5949. doi:10.1128/AEM.69.10.5941-5949.200314532048
  • Romero M, Diggle SP, Heeb S, Camara M, Otero A. Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett. 2008;280(1):73–80. doi:10.1111/j.1574-6968.2007.01046.x18194337
  • Lin YH, Xu JL, Hu J, et al. Acyl‐homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum‐quenching enzymes. Mol Microbiol. 2003;47(3):849–860. doi:10.1046/j.1365-2958.2003.03351.x12535081
  • Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol. 2009;75(1):45–53. doi:10.1128/AEM.01723-0818997027
  • Leadbetter JR, Greenberg E. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol. 2000;182(24):6921–6926. doi:10.1128/JB.182.24.6921-6926.200011092851
  • Huang JJ, Petersen A, Whiteley M, Leadbetter JR. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2006;72(2):1190–1197. doi:10.1128/AEM.72.2.1190-1197.200616461666
  • Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology. 2005;151(10):3313–3322. doi:10.1099/mic.0.27961-016207914
  • Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet. 2009;55(3):233–243. doi:10.1007/s00294-009-0241-219337734
  • Zhang LH, Dong YH. Quorum sensing and signal interference: diverse implications. Mol Microbiol. 2004;53(6):1563–1571. doi:10.1111/j.1365-2958.2004.04234.x15341639
  • Paul D, Kim YS, Ponnusamy K, Kweon JH. Application of quorum quenching to inhibit biofilm formation. Environ Eng Sci. 2009;26(8):1319–1324. doi:10.1089/ees.2008.0392
  • Billecke S, Draganov D, Counsell R, et al. Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Disposition. 2000;28(11):1335–1342.
  • Teiber JF, Horke S, Haines DC, et al. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun. 2008;76(6):2512–2519. doi:10.1128/IAI.01606-0718347034
  • Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–1247. doi:10.1194/jlr.M400511-JLR20015772423
  • Khersonsky O, Tawfik DS. Structure− reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry. 2005;44(16):6371–6382. doi:10.1021/bi047440d15835926
  • Marin SDL, Xu Y, Meijler MM, Janda KD. Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria. Bioorg Med Chem Lett. 2007;17(6):1549–1552. doi:10.1016/j.bmcl.2006.12.11817254784
  • Kaufmann GF, Park J, Mee JM, Ulevitch RJ, Janda KD. The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol. 2008;45(9):2710–2714. doi:10.1016/j.molimm.2008.01.01018304641
  • D’Almeida R, Molina R, Viola C, et al. Comparison of seven structurally related coumarins on the inhibition of quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. Bioorg Chem. 2017;73:37–42. doi:10.1016/j.bioorg.2017.05.01128599132
  • de Almeida FA, Vargas ELG, Carneiro DG, Pinto UM, Vanetti MCD. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella. Microb Pathog. 2018;121:369–388. doi:10.1016/j.micpath.2018.05.01429763730
  • Teplitski M, Mathesius U, Rumbaugh KP. Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev. 2010;111(1):100–116. doi:10.1021/cr100045m20536120
  • Vattem D, Mihalik K, Crixell S, McLean R. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 2007;78(4):302–310. doi:10.1016/j.fitote.2007.03.00917499938
  • Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact. 2000;13(6):637–648. doi:10.1094/MPMI.2000.13.6.63710830263
  • Choo J, Rukayadi Y, Hwang JK. Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol. 2006;42(6):637–641. doi:10.1111/j.1472-765X.2006.01928.x16706905
  • Teplitski M, Chen H, Rajamani S, et al. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 2004;134(1):137–146. doi:10.1104/pp.103.02991814671013
  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 2005;151(5):1325–1340. doi:10.1099/mic.0.27715-015870443
  • Zhang M, Wang M, Zhu X, Yu W, Gong Q. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnol Lett. 2018;40(5):865–870. doi:10.1007/s10529-018-2527-229502217
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Del Rev. 2013;65(13–14):1803–1815. doi:10.1016/j.addr.2013.07.011
  • Thanh Nguyen H, Goycoolea F. Chitosan/Cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules. 2017;22(11):1975. doi:10.3390/molecules22111975
  • Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017;18(2):120–128. doi:10.2174/138920021766616120111114627908256
  • Qais FA, Khan MS, Ahmad I. Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations. Springer: Biotechnological Applications of Quorum Sensing Inhibitors; 2018:227–244.
  • Liu X, Ma L, Mao Z, Gao C. Chitosan-Based Biomaterials for Tissue Repair and Regeneration. Springer: Chitosan for Biomaterials II; 2011:81–127.
  • Gopu V, Meena C, Shetty P. Quercetin influences quorum sensing in food borne bacteria. In-Vitro and In-Silico Evidence. PLoS One. 2015;10:e0134684.26248208
  • Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 2015;23(3):560–568. doi:10.1016/j.jfda.2015.01.00128911716
  • Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem. 2010;14(3):308–330. doi:10.2174/138527210790231919
  • Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioproc Tech. 2014;7(4):1149–1159. doi:10.1007/s11947-013-1160-2
  • Ong S-Y, Wu J, Moochhala SM, Tan M-H LJ. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323–4332. doi:10.1016/j.biomaterials.2008.07.03418708251
  • Ilk S, Sağlam N, Özgen M, Korkusuz F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol. 2017;94:653–662.27777079
  • Akyuz L, Kaya M, Mujtaba M, et al. Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int J Biol Macromol. 2018;115:438–446. doi:10.1016/j.ijbiomac.2018.04.04029680504
  • Ma Z, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohyd Polym. 2017;176:257–265. doi:10.1016/j.carbpol.2017.08.082
  • Sahariah P, Gaware V, Lieder R, et al. The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Mar Drugs. 2014;12(8):4635–4658. doi:10.3390/md1208463525196937
  • O’Callaghan KA, Kerry JP. Preparation of low-and medium-molecular weight chitosan nanoparticles and their antimicrobial evaluation against a panel of microorganisms, including cheese-derived cultures. Food Control. 2016;69:256–261. doi:10.1016/j.foodcont.2016.05.005
  • Muslim SN, Kadmy IMA, Ali ANM, et al. Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int J Biol Macromol. 2018;107:52–58. doi:10.1016/j.ijbiomac.2017.08.14628860065
  • Vadekeetil A, Chhibber S, Harjai K. Efficacy of intravesical targeting of novel quorum sensing inhibitor nanoparticles against Pseudomonas aeruginosa biofilm-associated murine pyelonephritis. J Drug Target. 2019;1–9.
  • Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 2014;169(12):888–896. doi:10.1016/j.micres.2014.05.00524958247
  • Zhang L, Jiang Y, Ding Y, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res. 2010;12(5):1625–1636. doi:10.1007/s11051-009-9711-1
  • Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007;9(3):479–489. doi:10.1007/s11051-006-9150-1
  • García‐Lara B, Saucedo‐Mora M, Roldán‐Sánchez J, et al. Inhibition of quorum‐sensing‐dependent virulence factors and biofilm formation of clinical and environmental P seudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol. 2015;61(3):299–305. doi:10.1111/lam.1245626084709
  • Mouneyrac C, Buffet P-E, Poirier L, et al. Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ Sci Pollut Res. 2014;21(13):7899–7912. doi:10.1007/s11356-014-2745-7
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3(1):95–101. doi:10.1016/j.nano.2006.12.001
  • Eom H-J CJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44(21):8337–8342. doi:10.1021/es102066820932003
  • Li N, Wang L, Yan H, et al. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environ Sci Pollut Res. 2018;25(7):7049–7058. doi:10.1007/s11356-017-0947-5
  • Mohanty A, Tan CH, Cao B. Impacts of nanomaterials on bacterial quorum sensing: differential effects on different signals. Environ Sci. 2016;3(2):351–356.
  • Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep. 2015;5(1):13719. doi:10.1038/srep1371926347993
  • Wagh MS, Patil RH, Thombre DK, Kulkarni MV, Gade WN, Kale BB. Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol. 2013;97(8):3593–3601. doi:10.1007/s00253-012-4603-123224498
  • Gholamrezazadeh M, Shakibaie MR, Monirzadeh F, Masoumi S, Hashemizadeh Z. Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene (rh1R) in drug-resistance Pseudomonas aeruginosa burn isolates. Burns. 2018;44(3):700–708. doi:10.1016/j.burns.2017.10.02129290510
  • Prateeksha S, Shoeb M, Sharma S, Naqvi A, Gupta V, Singh B. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol. 2017;7:93. doi:10.3389/fcimb.2017.0009328386534
  • Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014;192:131–140. doi:10.1016/j.jconrel.2014.06.05524997276
  • Davies J. Microbes have the last word. EMBO Rep. 2007;8(7):616–621. doi:10.1038/sj.embor.740102217603533
  • Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006;9(5):445–453. doi:10.1016/j.mib.2006.08.00616942902
  • Yim G, Huimi Wang H, Davies Frs J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci. 2007;362(1483):1195–1200. doi:10.1098/rstb.2007.204417360275
  • Kafil HS, Mobarez AM, Moghadam MF, Sadat Hashemi Z, Yousefi M. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis. Microb Pathog. 2016;92:30–35. doi:10.1016/j.micpath.2015.12.00826724739
  • Skindersoe ME, Alhede M, Phipps R, et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(10):3648–3663. doi:10.1128/AAC.01230-0718644954
  • Bala A, Kumar R, Harjai K. Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol. 2011;60(3):300–306. doi:10.1099/jmm.0.025387-021127154
  • Babić F, Venturi V, Maravić-Vlahoviček G. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate. BMC Infect Dis. 2010;10(1):148. doi:10.1186/1471-2334-10-14820525206
  • Sofer D, Gilboa-Garber N, Belz A, Garber NC. ‘Subinhibitory’erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy. 1999;45(5):335–341. doi:10.1159/00000722410473921
  • Tateda K, Comte R, Pechere J-C, Köhler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45(6):1930–1933. doi:10.1128/AAC.45.6.1930-1933.200111353657
  • El-Mowafy SA, Kha EG, Habib E-SE, Shaaban MI. Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. Afr Health Sci. 2017;17(1):199–207. doi:10.4314/ahs.v17i1.2529026394
  • Goh E-B, Yim G, Tsui W, McClure J, Surette MG, Davies J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci. 2002;99(26):17025–17030. doi:10.1073/pnas.25260769912482953
  • Linares JF, Gustafsson I, Baquero F, Martinez J. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci. 2006;103(51):19484–19489. doi:10.1073/pnas.060894910317148599
  • El-Mowafy SA, Abd E, Galil KH, et al. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb Pathog. 2014;74:25–32. doi:10.1016/j.micpath.2014.07.00825088031
  • Soheili V, Bazzaz BSF, Abdollahpour N, Hadizadeh F. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology. Microb Pathog. 2015;89:73–78. doi:10.1016/j.micpath.2015.08.01726358567
  • Chanda S, Rakholiya K. Combination therapy: synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol Book Series. 2011;5:520–529.
  • Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol. 2017;33(3):50. doi:10.1007/s11274-016-2195-028188589
  • Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Glob Antimicrob Resist. 2017;10:21–28. doi:10.1016/j.jgar.2017.03.00628591665
  • Li Y, Huang J, Li L, Liu L. Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem. 2017;42(4):1657–1669. doi:10.1159/00047941128738346
  • Chanda W, Joseph TP, Padhiar AA, et al. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp Ther Med. 2017;14(5):4328–4338. doi:10.3892/etm.2017.511029104645
  • Zhou J-W, Chen -T-T, Tan X-J, Sheng J-Y, Jia A-Q. Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa? Int J Antimicrob Agents. 2018;52(1):35–41. doi:10.1016/j.ijantimicag.2018.03.00229530588
  • Defoirdt T, Boon N, Bossier P. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog. 2010;6(7):e1000989. doi:10.1371/journal.ppat.100098920628566
  • García-Contreras R, Maeda T, Wood TK. Resistance to quorum-quenching compounds. Appl Environ Microbiol. 2013;79(22):6840–6846. doi:10.1128/AEM.02378-1324014536
  • García-Contreras R, Nunez-Lopez L, Jasso-Chávez R, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J. 2015;9(1):115. doi:10.1038/ismej.2014.9824936763
  • Maeda T, García-Contreras R, Pu M, et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J. 2012;6(3):493. doi:10.1038/ismej.2011.12221918575
  • García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, et al. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis. 2013;68(1):8–11. doi:10.1111/2049-632X.1203923620228
  • Song Z, Kong K, Wu H, et al. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine. 2010;17(13):1040–1046. doi:10.1016/j.phymed.2010.03.01520554187
  • Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 2017;12(4):e0176883. doi:10.1371/journal.pone.017688328453568
  • Paczkowski JE, Mukherjee S, McCready AR, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017;292(10):4064–4076. doi:10.1074/jbc.M116.77055228119451
  • Jakobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 2012;56(5):2314–2325. doi:10.1128/AAC.05919-1122314537
  • Ahmed SA, Rudden M, Smyth TJ, Dooley JS, Marchant R, Banat IM. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol. 2019;103(8):3521–3535. doi:10.1007/s00253-019-09618-030852658
  • Zhou S, Zhang A, Chu W. Phillyrin is an effective inhibitor of quorum sensing with potential as an anti-Pseudomonas aeruginosa infection therapy. J Vet Med Sci. 2019;81(3):473–479. doi:10.1292/jvms.18-052330686799
  • Hançer Aydemir D, Çifci G, Aviyente V, Boşgelmez‐Tinaz G. Quorum‐sensing inhibitor potential of trans‐anethole aganist Pseudomonas aeruginosa. J Appl Microbiol. 2018;125(3):731–739. doi:10.1111/jam.1389229694695
  • Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnol Lett. 2018;40(7):1087–1100. doi:10.1007/s10529-018-2557-929680931
  • Zhou J-W, Luo H-Z, Jiang H, Jian T-K, Chen Z-Q, Jia A-Q. Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J Agric Food Chem. 2018;66(7):1620–1628. doi:10.1021/acs.jafc.7b0503529353476
  • Zhou L, Zheng H, Tang Y, Yu W, Gong Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett. 2013;35(4):631–637. doi:10.1007/s10529-012-1126-x23264268
  • Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian SK. Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy. 2010;56(4):333–339. doi:10.1159/00032018520720417
  • Priya K, Yin W-F, Chan K-G. Anti-quorum sensing activity of the traditional Chinese herb, Phyllanthus amarus. Sensors. 2013;13(11):14558–14569. doi:10.3390/s13111455824169540
  • Kumar L, Chhibber S, Kumar R, Kumar M, Harjai K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia. 2015;102:84–95. doi:10.1016/j.fitote.2015.02.00225704369
  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2010;76(1):243–253. doi:10.1128/AEM.01059-0919854927
  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol. 2005;187(5):1799–1814. doi:10.1128/JB.187.5.1799-1814.200515716452
  • Bjarnsholt T, PØ J, Rasmussen TB, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005;151(12):3873–3880. doi:10.1099/mic.0.27955-016339933
  • Vasavi HS, Arun AB, Rekha PD. Anti‐quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol. 2014;58(5):286–293. doi:10.1111/1348-0421.1215024698116
  • Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci. 2013;38(5):835–844. doi:10.1007/s12038-013-9385-924296886
  • Husain FM, Ahmad I, Khan MS, Al-Shabib NA. Trigonella foenum-graceum (Seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid Based Complement Alternat Med. 2015;2015.
  • Okusa PN, Rasamiravaka T, Vandeputte O, Stévigny C, El Jaziri M, Duez P. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1. J Intercult Ethnopharmacol. 2014;3(4):138. doi:10.5455/jice.2014071003131226401363
  • Ilic-Tomic T, Sokovic M, Vojnovic S, et al. Diarylheptanoids from Alnus viridis ssp. viridis and Alnus glutinosa: modulation of Quorum Sensing activity in Pseudomonas aeruginosa. Planta Med. 2017;83(01/02):117–125. doi:10.1055/s-0042-10767427220074
  • Kim H-S, Lee S-H, Byun Y, Park H-D. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep. 2015;5(1):8656. doi:10.1038/srep0865625728862
  • Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M. In vitro anti-quorum sensing activity of phytol. Nat Prod Res. 2015;29(4):374–377. doi:10.1080/14786419.2014.94508825103916
  • Yang Y-X, Xu Z-H, Zhang Y-Q, Tian J, Weng L-X, Wang L-H. A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol. 2012;50(6):987–993. doi:10.1007/s12275-012-2149-723274985
  • Stacy DM, Le Quement ST, Hansen CL, et al. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem. 2013;11(6):938–954. doi:10.1039/C2OB27155A23258305
  • Geske GD, Wezeman RJ, Siegel AP, Blackwell HE. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc. 2005;127(37):12762–12763. doi:10.1021/ja053032116159245
  • Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem. 2005;3(2):253–262. doi:10.1039/B415761C15632967
  • Nizalapur S, Ö K, Biswas NN, et al. Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing inhibitors. Org Biomol Chem. 2016;14(2):680–693. doi:10.1039/C5OB01973G26552577
  • Geske GD, O’Neill JC, Miller DM, et al. Comparative analyses of N‐acylated homoserine lactones reveal unique structural features that dictate their ability to activate or inhibit quorum sensing. Chem Bio Chem. 2008;9(3):389–400. doi:10.1002/cbic.200700551
  • Miandji A, Ulusoy S, Dündar Y, et al. Synthesis and biological activities of some 1, 3-benzoxazol-2 (3H)-one derivatives as anti-quorum sensing agents. Arzneimittelforschung. 2012;62(07):330–334. doi:10.1055/s-0032-131259022588631
  • Heidari A, Noshiranzadeh N, Haghi F, Bikas R. Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microb Pathog. 2017;112:103–110. doi:10.1016/j.micpath.2017.09.04328939255
  • Lee LY, Hupfield T, Nicholson RL, et al. 2-Methoxycyclopentyl analogues of a Pseudomonas aeruginosa quorum sensing modulator. Mol Biosyst. 2008;4(6):505–507. doi:10.1039/b801563e18493644
  • Heidari A, Haghi F, Noshiranzadeh N, Bikas R. (S, E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Med Chem Res. 2017;26(9):1947–1955. doi:10.1007/s00044-017-1908-8
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci. 2013;110(44):17981–17986. doi:10.1073/pnas.131698111024143808