270
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Cysteine Potentiates Bactericidal Antibiotics Activity Against Gram-Negative Bacterial Persisters

, , , , &
Pages 2593-2599 | Published online: 28 Jul 2020

References

  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089–1093. doi:10.1126/science.117666719713519
  • Povolo VR, Ackermann M. Disseminating antibiotic resistance during treatment. Science. 2019;364(6442):737–738. doi:10.1126/science.aax662031123125
  • Fridman O, Goldberg A, Ronin I, et al. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 2014;513(7518):418–421. doi:10.1038/nature1346925043002
  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453. doi:10.1038/nrmicro.2017.4228529326
  • Stokes JM, Lopatkin AJ, Lobritz MA, et al. Bacterial metabolism and antibiotic efficacy. Cell Metab. 2019;30:251–259. doi:10.1016/j.cmet.2019.06.00931279676
  • Crabbé A, Jensen PØ, Bjarnsholt T, et al. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 2019;27(10):850–863. doi:10.1016/j.tim.2019.05.00331178124
  • Liu Y, Ding S, Shen J, et al. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep. 2019;36:573–592. doi:10.1039/C8NP00031J30324212
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336–343. doi:10.1038/nature1704226791724
  • Liu Y, Li R, Xiao X, et al. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol. 2019;45(3):301–314. doi:10.1080/1040841X.2019.159981330985240
  • Liu Y, Li R, Xiao X, et al. Molecules that inhibit bacterial resistance enzymes. Molecules. 2019;24:43. doi:10.3390/molecules24010043
  • Wright GD. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016;24(11):862–871. doi:10.1016/j.tim.2016.06.00927430191
  • Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis. 2016;16(2):239–251. doi:10.1016/S1473-3099(15)00466-126795692
  • Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–459. doi:10.1038/nature1409825561178
  • Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature. 2019;576(7787):459–464. doi:10.1038/s41586-019-1791-131747680
  • King AM, Reid-Yu SA, Wang WL, et al. Aspergillomarasmine A overcomes metallo-beta-lactamase antibiotic resistance. Nature. 2014;510(7506):503–506. doi:10.1038/nature1344524965651
  • Liu Y, Li R, Xiao X, et al. Bacterial metabolism-inspired molecules to modulate antibiotic efficacy. J Antimicrob Chemother. 2019;74:3409–3417. doi:10.1093/jac/dkz23031211378
  • Yang JH, Wright SN, Hamblin M, et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell. 2019;177:1649–1661 e1649.31080069
  • Morones-Ramirez JR, Winkler JA, Spina CS, et al. Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med. 2013;5:190ra181. doi:10.1126/scitranslmed.3006276
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI; 2018.
  • Wenzel M, Chiriac AI, Otto A, et al. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA. 2014;111(14):E1409–E1418. doi:10.1073/pnas.131990011124706874
  • Chen X, Zhong Z, Xu Z, et al. 2′, 7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radical Res. 2010;44:587–604. doi:10.3109/1071576100370980220370560
  • Liu Y, Yang K, Jia Y, et al. Repurposing peptidomimetic as potential inhibitor of New Delhi metallo-beta-lactamases in Gram-negative bacteria. ACS Infect Dis. 2019;5:2061–2066. doi:10.1021/acsinfecdis.9b0036431637907
  • Liu Y, Jia Y, Yang K, et al. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv Sci. 2020;7(12):1902227. doi:10.1002/advs.201902227
  • Song M, Liu Y, Huang X, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. 2020. doi:10.1038/s41564-020-0723-z
  • Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in Gram-negative bacteria. FEMS Microbiol Rev. 2010;34(4):476–495. doi:10.1111/j.1574-6976.2010.00213.x20236330
  • Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157:539–548. doi:10.1016/j.cell.2014.02.05024766804
  • Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17(3):141–155. doi:10.1038/s41579-018-0141-x30683887
  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, et al. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015;21:805–821. doi:10.1016/j.cmet.2015.05.01426039447
  • Huynen MA, Dandekar T, Bork P. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol. 1999;7(7):281–291. doi:10.1016/S0966-842X(99)01539-510390638
  • Meylan S, Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24:195–206. doi:10.1016/j.chembiol.2016.12.01528111098
  • Wang Y, Bojer MS, George SE, et al. Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Sci Rep. 2018;8:1–13. doi:10.1038/s41598-017-17765-529311619
  • Vilchèze C, Hartman T, Weinrick B, et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2017;114(17):4495–4500. doi:10.1073/pnas.170437611428396391
  • van der Reest J, Lilla S, Zheng L, et al. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat Commun. 2018;9:1581. doi:10.1038/s41467-018-04003-329679077
  • Ezraty B, Gennaris A, Barras F, et al. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 2017;15(7):385–396. doi:10.1038/nrmicro.2017.2628420885
  • Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol. 2003;185:1942–1950.12618458
  • Acker HV, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017;25(6):456–466. doi:10.1016/j.tim.2016.12.00828089288
  • Hong Y, Li L, Luan G, et al. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat Microbiol. 2017;2(12):1667. doi:10.1038/s41564-017-0037-y28970486