123
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Zinc Chelator N,N,N′,N′-Tetrakis(2-Pyridylmethyl)Ethylenediamine Reduces the Resistance of Mycobacterium abscessus to Imipenem

, , , , , , , & show all
Pages 2883-2890 | Published online: 18 Aug 2020

References

  • Swenson C, Zerbe CS, Fennelly K. Host variability in NTM disease: implications for research needs. Front Microbiol. 2018;9:2901. doi:10.3389/fmicb.2018.0290130559727
  • Hunt-Serracin AC, Parks BJ, Boll J, Boutte CC. Mycobacterium abscessus cells have altered antibiotic tolerance and surface glycolipids in artificial cystic fibrosis sputum medium. Antimicrob Agents Chemother. 2019;63:7. doi:10.1128/AAC.02488-18
  • Kwak N, Dalcolmo MP, Daley CL, et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J. 2019;54:1. doi:10.1183/13993003.01991-2018
  • Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of bedaquiline against Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2019;63:2.
  • Le Run E, Arthur M, Mainardi JL. In vitro and intracellular activity of imipenem combined with tedizolid, rifabutin, and avibactam against Mycobacterium abscessus. Antimicrob Agents Chemother. 2019;63(4). doi:10.1128/AAC.01915-18
  • Miyasaka T, Kunishima H, Komatsu M, et al. In vitro efficacy of imipenem in combination with six antimicrobial agents against Mycobacterium abscessus. Int J Antimicrob Agents. 2007;30(3):255–258. doi:10.1016/j.ijantimicag.2007.05.00317616451
  • Brown-Elliott BA, Rubio A, Wallace RJ Jr. In vitro susceptibility testing of a novel benzimidazole, SPR719, against Nontuberculous Mycobacteria. Antimicrob Agents Chemother. 2018;62:11. doi:10.1128/AAC.01503-18
  • Cheng A, Tsai YT, Chang SY, et al. In vitro synergism of rifabutin with clarithromycin, imipenem, and tigecycline against the Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2019;63:4. doi:10.1128/AAC.02234-18
  • Chua KYL, Bustamante A, Jelfs P, Chen SC-A, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales, Australia. Pathology. 2015;47(7):678–682. doi:10.1097/PAT.000000000000032726517625
  • Lee MC, Sun PL, Wu TL, et al. Antimicrobial resistance in Mycobacterium abscessus complex isolated from patients with skin and soft tissue infections at a tertiary teaching hospital in Taiwan. J Antimicrob Chemother. 2017;72(10):2782–2786. doi:10.1093/jac/dkx21229091186
  • Li B, Yang S, Chu H, et al. Relationship between antibiotic susceptibility and genotype in Mycobacterium abscessus clinical isolates. Front Microbiol. 2017;8:1739. doi:10.3389/fmicb.2017.0173928959242
  • Wachino J, Yamaguchi Y, Mori S, et al. Structural insights into recognition of hydrolyzed carbapenems and inhibitors by subclass B3 metallo-beta-lactamase SMB-1. Antimicrob Agents Chemother. 2016;60(7):4274–4282. doi:10.1128/AAC.03108-1527161644
  • Principe L, Vecchio G, Sheehan G, et al. Zinc chelators as carbapenem adjuvants for metallo-beta-lactamase-producing bacteria: in vitro and in vivo evaluation. Microb Drug Resist. 2020. doi:10.1089/mdr.2020.0037
  • Ye M, Xu L, Zou Y, et al. Molecular analysis of linezolid-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2019;63:2.
  • Gao Q, Wu S, Xu T, Zhao X, Huang H, Hu F. Emergence of carbapenem resistance in Bacteroides fragilis in China. Int J Antimicrob Agents. 2019;53(6):859–863. doi:10.1016/j.ijantimicag.2019.02.01730831235
  • Papp-Wallace KM, Bonomo RA. New beta-lactamase inhibitors in the clinic. Infect Dis Clin North Am. 2016;30(2):441–464. doi:10.1016/j.idc.2016.02.00727208767
  • Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace RJ Jr. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing Mycobacteria and Nocardia by use of broth microdilution and etest. J Clin Microbiol. 2016;54(6):1586–1592. doi:10.1128/JCM.00298-1627053677
  • Jones LA, Doucette L, Dellon EP, Esther CR, McKinzie CJ. Use of inhaled imipenem/cilastatin in pediatric patients with cystic fibrosis: a case series. J Cyst Fibros. 2019;18(4):e42–e44. doi:10.1016/j.jcf.2019.04.01731060800
  • Pandey R, Chen L, Manca C, et al. Dual beta-lactam combinations highly active against Mycobacterium abscessus complex in vitro. mBio. 2019;10(1). doi:10.1128/mBio.02895-18.
  • Rominski A, Schulthess B, Muller DM, Keller PM, Sander P. Effect of beta-lactamase production and beta-lactam instability on MIC testing results for. Mycobacterium Abscessus J Antimicrob Chemother. 2017;72(11):3070–3078. doi:10.1093/jac/dkx28428961987
  • Nordmann P, Poirel L. Emerging carbapenemases in gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–331. doi:10.1046/j.1469-0691.2002.00401.x12084099
  • Leonardelli F, Macedo D, Dudiuk C, et al. In vitro activity of combinations of zinc chelators with amphotericin B and posaconazole against six Mucorales species. Antimicrob Agents Chemother. 2019;63:5. doi:10.1128/AAC.00266-19
  • Mayer LS, Uciechowski P, Meyer S, Schwerdtle T, Rink L, Haase H. Differential impact of zinc deficiency on phagocytosis, oxidative burst, and production of pro-inflammatory cytokines by human monocytes. Metallomics. 2014;6(7):1288–1295. doi:10.1039/c4mt0051j24823619
  • Hein KZ, Takahashi H, Tsumori T, et al. Disulphide-reduced psoriasin is a human apoptosis-inducing broad-spectrum fungicide. Proc Natl Acad Sci U S A. 2015;112(42):13039–13044. doi:10.1073/pnas.151119711226438863
  • Azumah R, Dutta J, Somboro AM, et al. In vitro evaluation of metal chelators as potential metallo-beta-lactamase inhibitors. J Appl Microbiol. 2016;120(4):860–867. doi:10.1111/jam.1308526849010
  • Laskaris P, Atrouni A, Calera JA, et al. Administration of zinc chelators improves survival of mice infected with Aspergillus fumigatus both in monotherapy and in combination with caspofungin. Antimicrob Agents Chemother. 2016;60(10):5631–5639. doi:10.1128/AAC.00324-1627401578
  • Adler M, Dinterman RE, Wannemacher RW. Protection by the heavy metal chelator N,N,N’,N’-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) against the lethal action of botulinum neurotoxin A and B. Toxicon. 1997;35(7):1089–1100. doi:10.1016/S0041-0101(96)00215-29248007