244
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Optimized Production of the Allylamine Antifungal “Terbinafine” by Lysinibacillus Isolate MK212927 Using Response Surface Methodology

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3613-3626 | Published online: 15 Oct 2020

References

  • Pagano L, Mayor S. Invasive fungal infections in high-risk patients: report from TIMM-8 2017. Future Sci OA. 2018;4(6):FSO307–FSO307. doi:10.4155/fsoa-2018-001930057784
  • Stohs E, Zimmer A. An approach to suspected invasive fungal infection in patients with hematologic malignancy and HCT recipients with persistent neutropenic fever despite mold-active prophylaxis. Curr Fungal Infect Rep. 2020;14(1):89–98. doi:10.1007/s12281-020-00375-6
  • Lamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 2018;73(suppl_1):i4–i13. doi:10.1093/jac/dkx44429304207
  • Quindós G, Gil-Alonso S, Marcos-Arias C, et al. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Med Oral Patol Oral Cir Bucal. 2019;24(2):e172–e180. doi:10.4317/medoral.2297830818309
  • Barbosa F, Pinto E, Kijjoa A, Pinto M, Sousa E. Targeting antimicrobial drug resistance with marine natural products. Int J Antimicrob Agents. 2020;106005. doi:10.1016/j.ijantimicag.2020.106005
  • Andes DR, Safdar N, Baddley JW, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012;54(8):1110–1122. doi:10.1093/cid/cis02122412055
  • Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting to survive: how Candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 2020;16(5):e1008478. doi:10.1371/journal.ppat.100847832437438
  • Nam Y-D, Seo M-J, Lim S-I, Lee S-Y. Genome sequence of Lysinibacillus boronitolerans F1182, isolated from a traditional Korean fermented soybean product. J Bacteriol. 2012;194(21):5988. doi:10.1128/JB.01485-12.23045499
  • Che J, Liu B, Liu G, Chen Q, Lan J. Volatile organic compounds produced by Lysinibacillus sp. FJAT-4748 possess antifungal activity against Colletotrichum acutatum. Biocontrol Sci Technol. 2017;27:1–14. doi:10.1080/09583157.2017.1397600
  • Naureen Z, Rehman NU, Hussain H, et al. Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol. 2017;8(1477). doi:10.3389/fmicb.2017.01477
  • Khadka S, Adhikari S, Thapa A, et al. Screening and optimization of newly isolated thermotolerant Lysinibacillus fusiformis strain SK for protease and antifungal activity. Curr Microbiol. 2020;77(8):1558–1568. doi:10.1007/s00284-020-01976-732248284
  • Ziegel ER. Statistics and chemometrics for analytical chemistry. Technometrics. 2004;46(4):498–499. doi:10.1198/tech.2004.s248
  • Elibol M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process Bioch. 2004;39(9):1057–1062. doi:10.1016/S0032-9592(03)00232-2
  • Ganesan G, Velayudhan SS, David JSR. Statistical optimization of medium constituents and conditions for improved antimicrobial compound production by marine Streptomyces sp. JRG-04. Arch Biol Sci. 2017;69(4):723–731. doi:10.2298/ABS170224019G
  • Sa-Uth C, Rattanasena P, Chandrapatya A, Bussaman P. Modification of medium composition for enhancing the production of antifungal activity from Xenorhabdus stockiae PB09 by using response surface methodology. Int J Microbiol. 2018;2018:3965851. doi:10.1155/2018/396585130008748
  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–977. doi:10.1016/j.talanta.2008.05.01918761143
  • Ahsan T, Chen J, Wu Y, Irfan M. Application of response surface methodology for optimization of medium components for the production of secondary metabolites by Streptomyces diastatochromogenes KX852460. AMB Express. 2017;7(1):96. doi:10.1186/s13568-017-0388-z28508386
  • Singh RK, Kumar DP, Solanki MK, et al. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B‐CM18. J Basic Microbiol. 2013;53(5):451–460. doi:10.1002/jobm.20110059022733389
  • Zhang Y, Zhang J. Optimization of headspace solid-phase microextraction for analysis of ethyl carbamate in alcoholic beverages using a face-centered cube central composite design. Anal Chim Acta. 2008;627(2):212–218. doi:10.1016/j.aca.2008.08.01418809075
  • Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014;4(5):a019703. doi:10.1101/cshperspect.a019703.24789878
  • Girois SB, Chapuis F, Decullier E, Revol BGP. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2006;25(2):138. doi:10.1007/s10096-005-0080-016622909
  • Gowhar O, Singh N, Sultan S, Ain T, Mewara A, Shah I. Natural herbs as alternative to synthetic antifungal drugs – the future challenging therapy. Br Biomed Bull. 2015;3:440–452.
  • Zhao Y, Liang Y, Liu L, Cheng J, Yuan Y. Medium optimization for antifungal active substance production from Streptomyces lydicus using response surface methodology. Trans Tianjin Univ. 2017;23(1):78–86. doi:10.1007/s12209-016-0023-0
  • Fukuda T, Matsumoto A, Takahashi Y, Tomoda H, Ōmura S. Phenatic acids A and B, new potentiators of antifungal miconazole activity produced by Streptomyces sp. K03-0132. J Antibiot (Tokyo). 2005;58(4):252. doi:10.1038/ja.2005.2915981411
  • Li M, Penner G, Hernandez‐Sanabria E, Oba M, Guan L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol. 2009;107(6):1924–1934. doi:10.1111/j.1365-2672.2009.04376.x19508296
  • Vaidya R, Macmil S, Vyas P, Chhatpar H. The novel method for isolating chitinolytic bacteria and its application in screening for hyperchitinase producing mutant of Alcaligenes xylosoxydans. Lett Appl Microbiol. 2003;36(3):129–134. doi:10.1046/j.1472-765x.2003.01274.x12581369
  • Nawani N, Kapadnis B. Optimization of chitinase production using statistics based experimental designs. Process Bioch. 2005;40(2):651–660. doi:10.1016/j.procbio.2004.01.048
  • Mechri S, Kriaa M, Berrouina MBE, et al. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol. 2017;101:383–397. doi:10.1016/j.ijbiomac.2017.03.05128315440
  • Souagui Y, Tritsch D, Grosdemange-Billiard C, Kecha M. Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology. J Mycol Med. 2015;25(2):108–115. doi:10.1016/j.mycmed.2014.12.00425703134
  • Li T, Tang J, Karuppiah V, Li Y, Xu N, Chen J. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biol Control. 2020;140:104122. doi:10.1016/j.biocontrol.2019.104122.
  • Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, Taitai A. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by brushite. Arab J Chem. 2017;10:S3292–S3302. doi:10.1016/j.arabjc.2013.12.028
  • Kasiri MB, Modirshahla N, Mansouri H. Decolorization of organic dye solution by ozonation; optimization with response surface methodology. Int J Ind Chem. 2013;4(1):3. doi:10.1186/2228-5547-4-3
  • Chen X-C, Bai J-X, Cao J-M, et al. Medium optimization for the production of cyclic adenosine 3′, 5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour Technol. 2009;100(2):919–924. doi:10.1016/j.biortech.2008.07.06218778935
  • Abdel-Hafez SM, Hathout RM, Sammour OA. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. 2014;64:334–340. doi:10.1016/j.ijbiomac.2013.11.04124355618
  • El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH. Optimization of rhamnolipid production by P. aeruginosa Isolate P6. J Surfactants Deterg. 2016;19(5):943–955. doi:10.1007/s11743-016-1845-4
  • Wang Z-W, Liu X-L. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour Technol. 2008;99(17):8245–8251. doi:10.1016/j.biortech.2008.03.03918448333
  • Zhou Q, Ding L, Zhu Y, Zhong M, Yang C. Process parameters optimization of gallic acid removal from water by MIEX resin based on response surface methodology. Processes. 2020;8(3):273. doi:10.3390/pr8030273
  • Yun TY, Feng RJ, Zhou DB, et al. Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1–14 from cassava rhizosphere. PLoS One. 2018;13(11):e0206497. doi:10.1371/journal.pone.020649730427885
  • Aasen I, Møretrø T, Katla T, Axelsson L, Storrø I. Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol. 2000;53(2):159–166. doi:10.1007/s00253005000310709977
  • Iyapparaj P, Maruthiah T, Ramasubburayan R, et al. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquat Biosyst. 2013;9(1):1–10. doi:10.1186/2046-9063-9-1223276106
  • Rajendran D, Venkatachalam P, Ramakrishnan J. Response surface methodology: optimisation of antifungal bioemulsifier from novel Bacillus thuringiensis. Sci World J. 2014;2014:423289. doi:10.1155/2014/423289
  • Wang L, Zhang B, Han J, Zheng Y, Li J, Shan A. Optimization of hydrolysis condition of blood meal by Bacillus subtilis with response surface methodology. Int Biodeterior Biodegradation. 2015;104:112–117. doi:10.1016/j.ibiod.2015.05.018