175
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs Among Mycobacterium tuberculosis by a Reverse Dot Blot Hybridization Assay

, , ORCID Icon, , , , , , & show all
Pages 4091-4104 | Published online: 11 Nov 2020

References

  • World Health Organization. Global Tuberculosis Report 2019. Geneva, Switzerland: World Health Organization; 2019.
  • Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa110878922670902
  • Jain A, Dixit P. Multidrug-resistant to extensively drug resistant tuberculosis: what is next? J Biosci. 2008;33(4):605–616.19208985
  • Li Q, Gao H, Zhang Z, et al. Mutation and transmission profiles of second-line drug resistance in clinical isolates of drug-resistant Mycobacterium tuberculosis from Hebei Province, China. Front Microbiol. 2019;10:1838. doi:10.3389/fmicb.2019.0183831447823
  • Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2017;23(2):61–68. doi:10.1016/j.cmi.2016.09.00827665704
  • Zhao LL, Chen Y, Liu HC, et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother. 2014;58(4):1997–2005. doi:10.1128/AAC.01792-1324419342
  • Zhang Z, Liu M, Wang Y, Pang Y, Kam KM, Zhao Y. Molecular and phenotypic characterization of multidrug-resistant Mycobacterium tuberculosis isolates resistant to kanamycin, amikacin, and capreomycin in China. Eur J Clin Microbiol Infect Dis. 2014;33(11):1959–1966. doi:10.1007/s10096-014-2144-524906439
  • World Health Organization.The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs, policy update. Geneva, Switzerland: World Health Organization; 2016, WHO/HTM/TB/2016.07.
  • World Health Organization. Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs (WHO/HTM/TB/2008.392). Geneva: World Health Organization; 2008.
  • World Health Organization. Updated critical concentrations for first-line and second-line DST (as for May 2012); 2012.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. doi:10.2307/2529310843571
  • An DD, Hong Duyen NT, Lan NTN, et al. Beijing genotype of Mycobacterium tuberculosis is significantly associated with high-level fluoroquinolone resistance in Vietnam. Antimicrob Agents Chemother. 2009;53(11):4835–4839. doi:10.1128/AAC.00541-0919721073
  • Wan L, Guo Q, Wei JH, et al. Accuracy of a reverse dot blot hybridization assay for simultaneous detection of the resistance of four anti-tuberculosis drugs in Mycobacterium tuberculosis isolated from China. Infect Dis Poverty. 2020;9(1):38. doi:10.1186/s40249-020-00652-z32299480
  • Willby M, Sikes RD, Malik S, Metchock B, Posey JE. Correlation between GyrA substitutions and ofloxacin, levofloxacin, and moxifloxacin cross-resistance in Mycobacterium tuberculosis . Antimicrob Agents Chemother. 2015;59(9):5427–5434. doi:10.1128/AAC.00662-1526100699
  • Huo F, Zhang F, Xue Y, et al. Increased prevalence of levofloxacin-resistant Mycobacterium tuberculosis in China is associated with specific mutations within the gyrA gene. Int J Infect Dis. 2020;92:241–246. doi:10.1016/j.ijid.2020.01.02131978580
  • Chen C, Kong W, Zhu L, et al. Evaluation of the GenoType((R)) MTBDRplus line probe assay on sputum-positive samples in routine settings in China. Int J Tuberc Lung Dis. 2014;18(9):1034–1039.25189549
  • World Health Organization. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin, policy update. Geneva, Switzerland: World Health Organization; WHO/HTM/TB/2016.12.
  • de Vos M, Derendinger B, Dolby T, et al. Diagnostic accuracy and utility of fluoroType MTBDR, a new molecular assay for multidrug-resistant tuberculosis. J Clin Microbiol. 2018;56(9). doi:10.1128/JCM.00531-18.
  • Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis. 2018;18(12):1350–1359. doi:10.1016/S1473-3099(18)30496-130342828
  • Zar HJ, Workman LJ, Prins M, et al. Tuberculosis diagnosis in children using xpert ultra on different respiratory specimens. Am J Respir Crit Care Med. 2019;200(12):1531–1538. doi:10.1164/rccm.201904-0772OC31381861
  • Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–1015. doi:10.1056/NEJMoa090784720825313
  • Lacoma A, Garcia-Sierra N, Prat C, et al. GenoType MTBDRsl for molecular detection of second-line-drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol. 2012;50(1):30–36. doi:10.1128/JCM.05274-1122075597
  • Kambli P, Ajbani K, Nikam C, et al. Determination of MICs of levofloxacin for Mycobacterium tuberculosis with gyrA mutations. Int J Tuberc Lung Dis. 2015;19(10):1227–1229. doi:10.5588/ijtld.14.027726459538
  • Tagliani E, Cabibbe AM, Miotto P, et al. Diagnostic performance of the New Version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol. 2015;53(9):2961–2969. doi:10.1128/JCM.01257-1526179309
  • Theron G, Peter J, Richardson M, Warren R, Dheda K, Steingart KR. GenoType((R)) MTBDRsl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev. 2016;9:CD010705.27605387
  • Chandak RJ, Malhotra B, Bhargava S, Goel SK, Verma D, Tiwari J. Evaluation of MTBDRsl for detecting resistance in Mycobacterium tuberculosis to second-line drugs. Int J Tuberc Lung Dis. 2019;23(12):1257–1262. doi:10.5588/ijtld.18.056231931908
  • Shi W, Davies Forsman L, Hu Y, et al. Improved treatment outcome of multidrug-resistant tuberculosis with the use of a rapid molecular test to detect drug resistance in China. Int J Infect Dis. 2020;96:390–397. doi:10.1016/j.ijid.2020.04.04932353546
  • Sun F, Li Y, Chen Y, et al. Introducing molecular testing of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a prospective cohort study. Eur Respir J. 2019;53(3):1801770. doi:10.1183/13993003.01770-201830578402
  • World health organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. 2018 Licence: CC BY-NC-SA 3.0 IGO.
  • Avalos E, Catanzaro D, Catanzaro A, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One. 2015;10(3):e0120470. doi:10.1371/journal.pone.012047025816236
  • Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One. 2012;7(6):e39754. doi:10.1371/journal.pone.003975422761889
  • Kim K, Yang JS, Choi HB, Lee SH. Detection of resistance to fluoroquinolones and injectable drugs among antituberculosis drugs by allele-specific primer extension on a microsphere-based platform. J Microbiol Methods. 2018;144:111–116. doi:10.1016/j.mimet.2017.11.00729129484
  • Feliciano CS, Namburete EI, Rodrigues Placa J, et al. Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique. Tuberculosis (Edinb). 2018;110:59–67. doi:10.1016/j.tube.2018.04.00329779775
  • Namburete EI, Tivane I, Lisboa M, et al. Drug-resistant tuberculosis in Central Mozambique: the role of a rapid genotypic susceptibility testing. BMC Infect Dis. 2016;16:423. doi:10.1186/s12879-016-1766-x27534745
  • Sakhaee F, Ghazanfari M, Ebrahimzadeh N, et al. A comparative study of phenotypic and genotypic first- and second-line drug resistance testing of Mycobacterium tuberculosis. Biologicals. 2017;49:33–38. doi:10.1016/j.biologicals.2017.07.00328716625
  • Leung KL, Yip CW, Yeung YL, et al. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs. J Appl Microbiol. 2010;109(6):2087–2094. doi:10.1111/j.1365-2672.2010.04840.x20854453
  • Rigouts L, Coeck N, Gumusboga M, et al. Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother. 2016;71(2):314–323. doi:10.1093/jac/dkv36026604243
  • Dominguez J, Boettger EC, Cirillo D, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis. 2016;20(1):24–42. doi:10.5588/ijtld.15.0221
  • Sirgel FA, Warren RM, Streicher EM, Victor TC, van Helden PD, Bottger EC. gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2012;67(5):1088–1093. doi:10.1093/jac/dks03322357804
  • World health organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019 Licence: CC BY-NC-SA 3.0 IGO.
  • Liang YP, Chen Y, Xiao TY, et al. Applied multiplex allele specific PCR to detect second-line drug resistance among multidrug-resistant tuberculosis in China. Tuberculosis (Edinb). 2017;107:1–4. doi:10.1016/j.tube.2017.07.01029050755
  • Chen X, He G, Wang S, Lin S, Chen J, Zhang W. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance Mycobacterium tuberculosis isolates from China. Front Microbiol. 2019;10:1741. doi:10.3389/fmicb.2019.0174131417530
  • Zhang X, Zhao B, Huang H, et al. Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing, China. J Antimicrob Chemother. 2013;68(7):1537–1542. doi:10.1093/jac/dkt08223539239
  • Liu Q, Luo T, Li J, Mei J, Gao Q. Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. J Antimicrob Chemother. 2013;68(5):1097–1103. doi:10.1093/jac/dks50923288402
  • Abakur EHA, Alnour TM, Abuduhier F, Albalawi FM, Alfifi KA. Emerging of heteroresistance Mycobacterium tuberculosis in Saudi Arabia. Infect Disord Drug Targets. 2019;19. doi:10.2174/1871526519666190326141550
  • Ng KCS, Supply P, Cobelens FGJ, et al. How well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis? J Clin Microbiol. 2019;57(11). doi:10.1128/JCM.00717-19.
  • Pantel A, Petrella S, Veziris N, et al. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis. Antimicrob Agents Chemother. 2012;56(4):1990–1996. doi:10.1128/AAC.06272-1122290942
  • Kateete DP, Kamulegeya R, Kigozi E, et al. Frequency and patterns of second-line resistance conferring mutations among MDR-TB isolates resistant to a second-line drug from eSwatini, Somalia and Uganda (2014–2016). BMC Pulm Med. 2019;19(1):124. doi:10.1186/s12890-019-0891-x31291943
  • Zhang Z, Li T, Qu G, Pang Y, Zhao Y. In vitro synergistic activity of clofazimine and other antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents. 2015;45(1):71–75. doi:10.1016/j.ijantimicag.2014.09.01225459737
  • Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(5):2032–2041. doi:10.1128/AAC.01550-1021300839
  • Jabbar A, Phelan JE, de Sessions PF, et al. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci Rep. 2019;9(1):14996. doi:10.1038/s41598-019-51562-631628383
  • Ramakrishna V, Singh PK, Prakash S, Jain A. Second line injectable drug resistance and associated genetic mutations in newly diagnosed cases of multidrug-resistant tuberculosis. Microb Drug Resist. 2020;26(8):971–975. doi:10.1089/mdr.2019.021532101083
  • Ahmad K, Ahmad Z, Somayya R, Ali A, Rahat S. Analysis of rrs gene mutations in amikacin resistant clinical isolates of Mycobacterium tuberculosis from Khyber Pakhtunkhwa, Pakistan. Microb Pathog. 2017;108:66–70. doi:10.1016/j.micpath.2017.05.00228479509
  • Du Q, Dai G, Long Q, et al. Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China. Diagn Microbiol Infect Dis. 2013;77(2):138–142. doi:10.1016/j.diagmicrobio.2013.06.03123948547
  • Ogari CO, Nyamache AK, Nonoh J, Amukoye E. Prevalence and detection of drug resistant mutations in Mycobacterium tuberculosis among drug naive patients in Nairobi, Kenya. BMC Infect Dis. 2019;19(1):279. doi:10.1186/s12879-019-3911-930909867
  • Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One. 2012;7(3):e33275. doi:10.1371/journal.pone.003327522479378
  • Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J. 2017;50(6):1701354. doi:10.1183/13993003.01354-201729284687
  • Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2009;106(47):20004–20009. doi:10.1073/pnas.090792510619906990
  • Rodwell TC, Valafar F, Douglas J, et al. Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations. J Clin Microbiol. 2014;52(3):781–789. doi:10.1128/JCM.02701-1324353002
  • Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(2):571–577. doi:10.1128/AAC.49.2.571-577.200515673735
  • Rufai SB, Umay K, Singh PK, Singh S. Performance of Genotype MTBDRsl V2.0 over the Genotype MTBDRsl V1 for detection of second line drug resistance: an Indian perspective. PLoS One. 2020;15(3):e0229419. doi:10.1371/journal.pone.022941932130233