497
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Contribution of the AbaI/AbaR Quorum Sensing System to Resistance and Virulence of Acinetobacter baumannii Clinical Strains

, , , , &
Pages 4273-4281 | Published online: 24 Nov 2020

References

  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiol Infection. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Gajdacs M, Batori Z, Abrok M, Lazar A, Burian K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: a 10-year data analysis. Life. 2020;10:2. doi:10.3390/life10020016
  • Gajdacs M, Burian K, Terhes G. Resistance levels and epidemiology of non-fermenting gram-negative bacteria in urinary tract infections of inpatients and outpatients (RENFUTI): A 10-Year epidemiological snapshot. Antibiotics. 2019;8:3.
  • Gajdacs M, Spengler G. The role of drug repurposing in the development of novel antimicrobial drugs: non-antibiotic pharmacological agents as quorum sensing-inhibitors. Antibiotics. 2019;8:4. doi:10.3390/antibiotics8040270
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–199. doi:10.1146/annurev.micro.55.1.16511544353
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–346. doi:10.1146/annurev.cellbio.21.012704.13100116212498
  • Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–588. doi:10.1038/nrmicro.2016.8927510864
  • Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol. 2008;190(9):3386–3392. doi:10.1128/JB.01929-0718281398
  • Erdonmez D, Rad AY, Aksoz N. Quorum sensing molecules production by nosocomial and soil isolates Acinetobacter baumannii. Arch Microbiol. 2017;199(10):1325–1334. doi:10.1007/s00203-017-1408-828688010
  • Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009;4(3):273–278. doi:10.2217/fmb.09.519327114
  • Stacy DM, Welsh MA, Rather PN, Blackwell HE. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem Biol. 2012;7(10):1719–1728. doi:10.1021/cb300351x22853441
  • Castillo-Juarez I, Lopez-Jacome LE, Soberon-Chavez G, et al. Exploiting quorum sensing inhibition for the control of pseudomonas aeruginosa and acinetobacter baumannii biofilms. Curr Top Med Chem. 2017;17:1915–1927. doi:10.2174/1568026617666170105144104
  • McClean KH, Winson MK, Fish L, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. 1997;143(Pt 12):3703–3711. doi:10.1099/00221287-143-12-37039421896
  • Zhu J, Chai Y, Zhong Z, Li S, Winans SC. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol. 2003;69(11):6949–6953. doi:10.1128/AEM.69.11.6949-6953.200314602662
  • Ravn L, Christensen AB, Molin S, Givskov M, Gram L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods. 2001;44(3):239–251. doi:10.1016/S0167-7012(01)00217-211240047
  • Gajdacs M, Spengler G. Standard operating procedure (SOP) for disk diffusion-based quorum sensing inhibition assays. Acta Pharm Hung. 2019;89(4):117–125. doi:10.33892/aph.2019.89.117-125
  • Hou HM, Zhu YL, Wang JY, et al. Characteristics of N-Acylhomoserine lactones produced by hafnia alvei H4 isolated from spoiled instant sea cucumber. Sensors. 2017;17:4. doi:10.3390/s17040772
  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–179. doi:10.1016/S0167-7012(00)00122-610699673
  • Basson A, Flemming LA, Chenia HY. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microb Ecol. 2008;55(1):1–14. doi:10.1007/s00248-007-9245-y17401596
  • Carretero-Ledesma M, Garcia-Quintanilla M, Martin-Pena R, Pulido MR, Pachon J, McConnell MJ. Phenotypic changes associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. Virulence. 2018;9(1):930–942. doi:10.1080/21505594.2018.146018729638177
  • Dou Y, Song F, Guo F, et al. Acinetobacter baumannii quorum-sensing signalling molecule induces the expression of drug-resistance genes. Mol Med Rep. 2017;15(6):4061–4068. doi:10.3892/mmr.2017.652828487993
  • Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102. doi:10.1038/nrmicro.2017.14829249812
  • Behzadi P, Urban E, Gajdacs M. Association between biofilm-production and antibiotic resistance in uropathogenic Escherichia coli (UPEC): an in vitro study. Diseases. 2020;8:2. doi:10.3390/diseases8020017
  • Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio. 2013;4:4. doi:10.1128/mBio.00360-13
  • Skiebe E, de Berardinis V, Morczinek P, et al. Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol. 2012;302(3):117–128. doi:10.1016/j.ijmm.2012.03.00322560766
  • Clemmer KM, Bonomo RA, Rather PN. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology. 2011;157(Pt 9):2534–2544. doi:10.1099/mic.0.049791-021700662
  • McQueary CN, Kirkup BC, Si Y, et al. Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility. J Microbiol. 2012;50(3):434–443. doi:10.1007/s12275-012-1555-122752907
  • Mussi MA, Gaddy JA, Cabruja M, et al. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol. 2010;192(24):6336–6345. doi:10.1128/JB.00917-1020889755
  • Perez-Varela M, Corral J, Aranda J, Barbe J. Roles of efflux pumps from different superfamilies in the surface-associated motility and virulence of acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother. 2019;63:3. doi:10.1128/AAC.02190-18
  • Nesse LL, Berg K, Vestby LK, Olsaker I, Djonne B. Salmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals. Acta Vet Scand. 2011;53:44. doi:10.1186/1751-0147-53-4421711544
  • Vikstrom E, Bui L, Konradsson P, Magnusson KE. The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Exp Cell Res. 2009;315(2):313–326. doi:10.1016/j.yexcr.2008.10.04419038248
  • Vikstrom E, Bui L, Konradsson P, Magnusson KE. Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. Eur J Cell Biol. 2010;89(8):584–597. doi:10.1016/j.ejcb.2010.03.00220434232
  • Holm A, Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci. 2014;5:309. doi:10.3389/fpls.2014.0030925018766
  • Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother. 2009;53(6):2605–2609. doi:10.1128/AAC.01533-0819332683
  • Pearson JP, Feldman M, Iglewski BH, Prince A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun. 2000;68(7):4331–4334. doi:10.1128/IAI.68.7.4331-4334.200010858254
  • Tang HB, DiMango E, Bryan R, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun. 1996;64(1):37–43. doi:10.1128/IAI.64.1.37-43.19968557368