176
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Efflux Pump AcrAB Confers Decreased Susceptibility to Piperacillin–Tazobactam and Ceftolozane–Tazobactam in Tigecycline-Non-Susceptible Klebsiella pneumoniae

, , , , , , & ORCID Icon show all
Pages 4309-4319 | Published online: 26 Nov 2020

References

  • Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016;29(6):583–594. doi:10.1097/QCO.000000000000031427584587
  • Harris PNA, Tambyah PA, Paterson DL. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(4):475–485. doi:10.1016/S1473-3099(14)70950-825716293
  • Tamma PD, Rodriguez-Bano J. The use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections. Clin Infect Dis. 2017;64(7):972–980. doi:10.1093/cid/cix03428362938
  • Harris PNA, Tambyah PA, Lye DC, et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance. JAMA. 2018;320(10):984–994. doi:10.1001/jama.2018.1216330208454
  • Hu F-P, Guo Y, Zhu D-M, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016;22(Suppl 1):S9–14. doi:10.1016/j.cmi.2016.01.00127000156
  • Popejoy MW, Paterson DL, Cloutier D, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother. 2017;72(1):268–272. doi:10.1093/jac/dkw37427707990
  • Shen Z, Ding B, Bi Y, et al. CTX-M-190, a novel beta-lactamase resistant to tazobactam and sulbactam, identified in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2016;61(1):e01848–16.27821452
  • van Duin D, Bonomo RA, Saravolatz LD. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–241. doi:10.1093/cid/ciw24327098166
  • Akhan S, et al. Conjugative Resistance to Tazobactam plus piperacillin Among Extended-spectrum Beta-lactamase-producing Nosocomial Klebsiella pneumoniae. Scand J Infect Dis 2001;33(7):512–515. doi:10.1080/00365540110026520
  • Dubois V, Poirel L, Arpin C, et al. SHV-49, a novel inhibitor-resistant β-lactamase in a clinical isolate of Klebsiella pneumoniae. Antimicrob AgentsChemother. 2004;48(11):4466–4469. doi:10.1128/AAC.48.11.4466-4469.2004
  • Zhou K, Tao Y, Han L, et al. Piperacillin-tazobactam (TZP) resistance in Escherichia coli due to hyperproduction of TEM-1 β-lactamase mediated by the promoter Pa/Pb. Fron Microbiol. 2019;10:833. doi:10.3389/fmicb.2019.00833
  • Canton R, Morosini MI, Martin OM, et al. IRT and CMT β-lactamases and inhibitor resistance. Clin Microbiol Infect. 2008;14(Suppl 1):53–62. doi:10.1111/j.1469-0691.2007.01849.x18154528
  • Wang XD, Cai JC, Zhou HW, et al. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated β-lactamase production and OmpK36 porin deficiency. J Med Microbiol. 2009;58(9):1196–1202. doi:10.1099/jmm.0.008094-019528170
  • Dos Santos KV, Diniz CG, de Castro Veloso L, et al. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010;161(4):268–275. doi:10.1016/j.resmic.2010.03.00620381611
  • Cabot G, Bruchmann S, Mulet X, et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091–3099. doi:10.1128/AAC.02462-1324637685
  • Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(3):658–663. doi:10.1093/jac/dkx42429149337
  • MacVane SH, Pandey R, Steed LL, et al. Emergence of ceftolozane-tazobactam-resistant Pseudomonas aeruginosa during treatment is mediated by a single AmpC structural mutation. Antimicrob Agents Chemother. 2017;61(12):e01183–17. doi:10.1128/AAC.01183-17
  • Cluck D, Lewis P, Stayer B, et al. Ceftolozane–tazobactam: a new-generation cephalosporin. Am J Health Syst Pharm. 2015;72(24):2135–2146. doi:10.2146/ajhp15004926637512
  • Sheng ZK, Hu F, Wang W, et al. Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2014;58(11):6982–6985.25182649
  • Bradford PA, Petersen PJ, Young M, et al. Tigecycline MIC testing by broth dilution requires use of fresh medium or addition of the biocatalytic oxygen-reducing reagent oxyrase to standardize the test method. Antimicrob Agents Chemother. 2005;49(9):3903–3909. doi:10.1128/AAC.49.9.3903-3909.200516127069
  • In C. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinial and Laboratory Standards Institute; 2018.
  • Hornsey M, Ellington MJ, Doumith M, et al. Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome. J Antimicrob Chemother. 2010;65(3):479–482. doi:10.1093/jac/dkp47520051474
  • Xu Q, Jiang J, Zhu Z, et al. Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int J Antimicrob Agents. 2019;54(2):223–227. doi:10.1016/j.ijantimicag.2019.06.00431200021
  • Bi D, Jiang X, Sheng Z-K, et al. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a ‘resistance-disarmed’ model organism. J Antimicrob Chemother. 2015;70(10):2770–2774. doi:10.1093/jac/dkv20426169555
  • Nicolas-Chanoine M-H, Mayer N, Guyot K, et al. Interplay between membrane permeability and enzymatic barrier leads to antibiotic-dependent resistance in Klebsiella pneumoniae. Frontiers in Microbiology. 2018;9:1422. doi:10.3389/fmicb.2018.0142230008709
  • Tam H-K, Malviya VN, Foong W-E, et al. Binding and transport of carboxylated drugs by the multidrug transporter AcrB. J Mol Biol. 2020;432(4):861–877. doi:10.1016/j.jmb.2019.12.02531881208
  • Suzuki Y, Sato T, Fukushima Y, et al. Contribution of β-lactamase and efflux pump overproduction to tazobactam-piperacillin resistance in clinical isolates of Escherichia coli. Int J Antimicro Agents. 2020;55(4):105919. doi:10.1016/j.ijantimicag.2020.105919
  • Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to β-lactams. Antimicrob Agents Chemother. 2000;44(5):1387–1390. doi:10.1128/AAC.44.5.1387-1390.200010770787
  • Foong WE, Wilhelm J, Tam H-K, et al. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters. J Antimicrob Chemother. 2020;75(5):1135–1139. doi:10.1093/jac/dkaa01532049277
  • Du X, He F, Shi Q, et al. The rapid emergence of tigecycline resistance in <sub>blaKPC–2 harboring Klebsiella pneumoniae, as mediated in vivo by mutation in tetA during tigecycline treatment. Front Microbiol. 2018;9:648. doi:10.3389/fmicb.2018.0064829675006
  • De Majumdar S, Yu J, Fookes M, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015;11(1):e1004627. doi:10.1371/journal.ppat.100462725633080
  • Ye M, Ding B, Qian H, et al. In vivo development of tigecycline resistance in Klebsiella pneumoniae owing to deletion of the ramR ribosomal binding site. Int J Antimicrob Agents. 2017;50(4):523–528. doi:10.1016/j.ijantimicag.2017.04.02428668690
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli J Bacteriol. 2005;187(6):1923–1929.15743938
  • Nikaido H, Basina M, Nguyen V, et al. Multidrug efflux pump AcrAB of Salmonella typhimuriumexcretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol. 1998;180(17):4686–4692. doi:10.1128/JB.180.17.4686-4692.19989721312
  • Hocquet D, Nordmann P, El Garch F, et al. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicro Agents Chemother. 2006;50(4):1347–1351. doi:10.1128/AAC.50.4.1347-1351.2006
  • Laudy AE, Osinska P, Namyslowska A, et al. Modification of the susceptibility of Gram-negative rods producing ESβLS to β-lactams by the efflux phenomenon. PLoS One. 2015;10(3):e0119997. doi:10.1371/journal.pone.011999725793625
  • Nelson K, Hemarajata P, Sun D, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61(10):e00989–17. doi:10.1128/AAC.00989-1728739787
  • Juan CH, Huang YW, Lin YT, et al. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2016;60(12):7357–7363.27697759