2,567
Views
51
CrossRef citations to date
0
Altmetric
Review

Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery

, ORCID Icon & ORCID Icon
Pages 4047-4060 | Published online: 10 Nov 2020

References

  • Buffet PA, Safeukui I, Deplaine G, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood. 2011;117(2):381–392. doi:10.1182/blood-2010-04-20291120852127
  • Reyburn H. New WHO guidelines for the treatment of malaria. BMJ. 2010;340:c2637. doi:10.1136/bmj.c263720511305
  • Zhang Y, Xie L, Xie L, Bourne P. The Plasmodium falciparum drugome and its polypharmacological implications. bioRxiv. 2016;042481.
  • Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006;124(4):755–766. doi:10.1016/j.cell.2006.02.00616497586
  • Lee RS, Waters AP, Brewer JM. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nat Commun. 2018;9.
  • Woldearegai TG Characterization of Plasmodium falciparum mature gametocytes: lifespan, immunogenicity and susceptibility to novel compounds. 2018.
  • Kondilis E, Giannakopoulos S, Gavana M, Ierodiakonou I, Waitzkin H, Benos A. Economic crisis, restrictive policies, and the population’s health and health care: the Greek case. Am J Public Health. 2013;103(6):973–979. doi:10.2105/AJPH.2012.30112623597358
  • Britton S, Cheng Q, McCarthy JS. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J. 2016;15(1):88. doi:10.1186/s12936-016-1158-026879936
  • Trampuz A, Jereb M, Muzlovic I, Prabhu RM. Clinical review: severe malaria. Crit Care. 2003;7(4):315. doi:10.1186/cc218312930555
  • O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect Dis. 2010;10(8):545–555. doi:10.1016/S1473-3099(10)70096-720637696
  • Sachs J, Malaney P. The economic and social burden of malaria. Nature. 2002;415(6872):680. doi:10.1038/415680a11832956
  • Organization WH. WHO malaria policy advisory committee meeting: meeting report, April 2018. World Health Organization;2018.
  • Guerra CA, Snow RW, Hay SI. Mapping the global extent of malaria in 2005. Trends Parasitol. 2006;22(8):353–358. doi:10.1016/j.pt.2006.06.00616798089
  • Woldearegai TG, Kremsner PG, Kun JF, Mordmüller B. Plasmodium vivax malaria in Duffy-negative individuals from Ethiopia. Trans R Soc Trop Med Hyg. 2013;107(5):328–331. doi:10.1093/trstmh/trt01623584375
  • Deressa W, Olana D, Chibsa S. Magnitude of malaria admissions and deaths at hospitals and health centers in Oromia, Ethiopia. Ethiop Med J. 2004;42(4):237–246.16122115
  • Ethiopia U. President’s malaria initiative Ethiopia-malaria operational plan FY 2017. 2017.
  • Kumar S, Bhardwaj T, Prasad D, Singh RK. Drug targets for resistant malaria: historic to future perspectives. Biomed Pharmacother. 2018;104:8–27. doi:10.1016/j.biopha.2018.05.00929758416
  • Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol. 2006;36(14):1427–1441. doi:10.1016/j.ijpara.2006.07.01117005183
  • Alam A, Goyal M, Iqbal MS, et al. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol. 2009;2(5):469–489.22112223
  • Plucinski MM, Talundzic E, Morton L, et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge provinces, Angola. Antimicrob Agents Chemother. 2015;59(1):437–443.25367912
  • Popovici J, Pierce-Friedrich L, Kim S, et al. Recrudescence, reinfection, or relapse? A more rigorous framework to assess chloroquine efficacy for Plasmodium vivax malaria. J Infect Dis. 2019;219(2):315–322.30102351
  • John GK, Douglas NM, Von Seidlein L, et al. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J. 2012;11(1):280. doi:10.1186/1475-2875-11-28022900786
  • Fogh S, Jepsen S, Effersøe P. Chloroquine-resistant Plasmodium falciparum malaria in Kenya. Trans R Soc Trop Med Hyg. 1979;73(2):228–229. doi:10.1016/0035-9203(79)90220-7382468
  • Phillips EJ, Keystone JS, Kain KC. Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis. 1996;23(5):1171–1173. doi:10.1093/clinids/23.5.11718922821
  • Rieckmann K, Davis D, Hutton D. Plasmodium vivax resistance to chloroquine? Lancet. 1989;334(8673):1183–1184. doi:10.1016/S0140-6736(89)91792-3
  • Mohapatra M, Padhiary K, Mishra D, Sethy G. Atypical manifestations of Plasmodium vivax malaria. Indian J Malariol. 2002;39(1–2):18–25.14686106
  • Rifakis PM, Hernandez O, Fernández CT, Rodriguez‐Morales AJ, Von A, Franco‐Paredes C. Atypical Plasmodium vivax malaria in a traveler: bilateral hydronephrosis, severe thrombocytopenia, and hypotension. J Travel Med. 2008;15(2):119–121. doi:10.1111/j.1708-8305.2007.00178.x18346245
  • Tan LK, Yacoub S, Scott S, Bhagani S, Jacobs M. Acute lung injury and other serious complications of Plasmodium vivax malaria. Lancet Infect Dis. 2008;8(7):449–454. doi:10.1016/S1473-3099(08)70153-118582837
  • Arnold J, Alving A, Hockwald E, et al. The antimalarial action of primaquine against the blood and tissue stages of falciparum malaria (Panama, PF-6 strain). J Lab Clin Med. 1955;46(3):391–397.13252317
  • Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42(3):267–278. doi:10.1016/j.bcmd.2008.12.00519233695
  • Tulu AN, Webber RH, Schellenberg JA, Bradley DJ. Failure of chloroquine treatment for malaria in the highlands of Ethiopia. Trans R Soc Trop Med Hyg. 1996;90(5):556–557. doi:10.1016/S0035-9203(96)90322-38944273
  • Sidhu ABS, Uhlemann A-C, Valderramos SG, Valderramos J-C, Krishna S, Fidock DA. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis. 2006;194(4):528–535. doi:10.1086/50711516845638
  • Paget-McNicol S, Saul A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology. 2001;122(5):497–505. doi:10.1017/S003118200100773911393822
  • Muller O. Challenges for control and elimination in the 21st century. Malaria Afri. 2011;60:193.
  • Newton PN, Green MD, Mildenhall DC, et al. Poor quality vital anti-malarials in Africa-an urgent neglected public health priority. Malar J. 2011;10(1):352. doi:10.1186/1475-2875-10-35222152094
  • Hall KA, Newton PN, Green MD, et al. Characterization of counterfeit artesunate antimalarial tablets from southeast Asia. Am J Trop Med Hyg. 2006;75(5):804–811. doi:10.4269/ajtmh.2006.75.80417123969
  • Goldberg DE, Siliciano RF, Jacobs Jr WR. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell. 2012;148(6):1271–1283. doi:10.1016/j.cell.2012.02.02122424234
  • Bray P, Ward S, O’neill P. Quinolines and artemisinin: chemistry, biology and history In: Malaria: Drugs, Disease and Post-Genomic Biology. Springer-Verlag Berlin Heidelberg; 2005:3–38.
  • White NJ. Counter perspective: artemisinin resistance: facts, fears, and fables. Am J Trop Med Hyg. 2012;87(5):785. doi:10.4269/ajtmh.2012.12-057323136172
  • Burrows JN, Duparc S, Gutteridge WE, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16(1):26.28086874
  • Baker DA, Drought LG, Flueck C, et al. Cyclic nucleotide signalling in malaria parasites. Open Biol. 2017;7(12):170213. doi:10.1098/rsob.17021329263246
  • Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin C-S, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10(1):263. doi:10.1186/1475-2875-10-26321914160
  • Yeung S, Socheat D, Moorthy VS, Mills AJ. Artemisinin resistance on the Thai–Cambodian border. Lancet. 2009;374(9699):1418–1419. doi:10.1016/S0140-6736(09)61856-019854365
  • Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med. 2017;376(10).
  • Baragaña B, Hallyburton I, Lee MC, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315. doi:10.1038/nature1445126085270
  • Yang Y-Z, Little B, Meshnick SR Alkylation of proteins by artemisinin: effects of heme, pH, and drug structure. 1994.
  • Yang Y-Z, Asawamahasakda W, Meshnick SR Alkylation of human albumin by the antimalarial artemisinin. 1993.
  • Eckstein-Ludwig U, Webb R, Van Goethem I, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424(6951):957. doi:10.1038/nature0181312931192
  • Hartwig CL, Rosenthal AS, D’angelo J, Griffin CE, Posner GH, Cooper RA. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol. 2009;77(3):322–336. doi:10.1016/j.bcp.2008.10.01519022224
  • Inselburg J. Induction and isolation of artemisinine-resistant mutants of Plasmodium falciparum. Am J Trop Med Hyg. 1985;34(3):417–418. doi:10.4269/ajtmh.1985.34.4173890571
  • Chawira A, Warhurst D, Peters W. Qinghaosu resistance in rodent malaria. Trans R Soc Trop Med Hyg. 1986;80(3):477–480. doi:10.1016/0035-9203(86)90351-23541309
  • Gay F, Ciceron L, Litaudon M, et al. In-vitro resistance of Plasmodium falciparum to qinghaosu derivatives in West Africa. Lancet. 1994;343(8901):850–851. doi:10.1016/S0140-6736(94)92049-4
  • Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16:156. doi:10.1038/nrmicro.2017.16129355852
  • Bhattacharjee S, Stahelin RV, Haldar K. Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends Parasitol. 2012;28(12):555–562. doi:10.1016/j.pt.2012.09.00423084821
  • Carter TE, Boulter A, Existe A, et al. Artemisinin resistance-associated polymorphisms at the K13-propeller locus are absent in Plasmodium falciparum isolates from Haiti. Am J Trop Med Hyg. 2015;92(3):552–554. doi:10.4269/ajtmh.14-066425646258
  • Plowe CV, Roper C, Barnwell JW, et al. World Antimalarial Resistance Network (WARN) III: molecular markers for drug resistant malaria. Malar J. 2007;6(1):121. doi:10.1186/1475-2875-6-12117822535
  • Yayon A, Cabantchik Z, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum‐infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J. 1984;3(11):2695–2700.6391917
  • Sanchez CP, Rohrbach P, McLean JE, Fidock DA, Stein WD, Lanzer M. Differences in trans‐stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. Mol Microbiol. 2007;64(2):407–420. doi:10.1111/j.1365-2958.2007.05664.x17493125
  • van Es HH, Renkema H, Aerts H, Schurr E. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdr1 gene. Mol Biochem Parasitol. 1994;68(2):209–219. doi:10.1016/0166-6851(94)90166-X7739667
  • Sanchez CP, Rotmann A, Stein WD, Lanzer M. Polymorphisms within PfMDR1 alter the substrate specificity for anti‐malarial drugs in Plasmodium falciparum. Mol Microbiol. 2008;70(4):786–798.18713316
  • Raj DK, Mu J, Jiang H, et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem. 2009;284(12):7687–7696. doi:10.1074/jbc.M80694420019117944
  • Kessl JJ, Lange BB, Merbitz-Zahradnik T, et al. Molecular basis for atovaquone binding to the cytochrome bc1 complex. J Biol Chem. 2003;278(33):31312–31318. doi:10.1074/jbc.M30404220012791689
  • Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. nature. 2007;446(7131):88. doi:10.1038/nature0557217330044
  • Lim MY-X, LaMonte G, Lee MC, et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016;1(12):16166. doi:10.1038/nmicrobiol.2016.16627642791
  • Chow ED, Lim L, Fidock DA, Diagana TT, Winzeler EA, Bifani P UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. 2016.
  • Kuhen KL, Chatterjee AK, Rottmann M, et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014;58(9):5060–5067. doi:10.1128/AAC.02727-1324913172
  • Jiang H, Patel JJ, Yi M, et al. Genome-wide compensatory changes accompany drug-selected mutations in the Plasmodium falciparum crt gene. PLoS One. 2008;3(6):e2484. doi:10.1371/journal.pone.000248418575593
  • Mwai L, Diriye A, Masseno V, et al. Genome wide adaptations of Plasmodium falciparum in response to lumefantrine selective drug pressure. PLoS One. 2012;7(2):e31623. doi:10.1371/journal.pone.003162322384044
  • Vestergaard LS, Ringwald P. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies. Am J Trop Med Hyg. 2007;77(6_Suppl):153–159. doi:10.4269/ajtmh.2007.77.15318165488
  • Organization WH. Methods for surveillance of antimalarial drug efficacy. 2009.
  • Oyelade J, Isewon I, Aromolaran O, et al. Computational identification of metabolic pathways of plasmodium falciparum using the-shortest path algorithm. Int J Genomics. 2019;2019.
  • Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3(6):509–520. doi:10.1038/nrd141615173840
  • Comer E, Beaudoin JA, Kato N, et al. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents. J Med Chem. 2014;57(20):8496–8502. doi:10.1021/jm500994n25211597
  • Mehta M, Sonawat HM, Sharma S. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. J Vector Borne Dis. 2006;43(3):95.17024857
  • Tilley L, Dixon MW, Kirk K. The Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol. 2011;43(6):839–842. doi:10.1016/j.biocel.2011.03.01221458590
  • Dickerman BK, Elsworth B, Cobbold SA, et al. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep. 2016;6:37502. doi:10.1038/srep3750227874068
  • Kraft TE, Armstrong C, Heitmeier MR, Odom AR, Hruz PW. The glucose transporter PfHT is an antimalarial target of the HIV protease inhibitor lopinavir. Antimicrob Agents Chemother. 2015;AAC. 00899–00815.
  • Kirk K. Membrane transport in the malaria-infected erythrocyte. Physiol Rev. 2001;81(2):495–537. doi:10.1152/physrev.2001.81.2.49511274338
  • Heitmeier MR, Hresko RC, Edwards RL, et al. Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. PLoS One. 2019;14(5):e0216457. doi:10.1371/journal.pone.021645731071153
  • Meireles P, Sales‐Dias J, Andrade CM, et al. GLUT1‐mediated glucose uptake plays a crucial role during Plasmodium hepatic infection. Cell Microbiol. 2017;19(2):e12646. doi:10.1111/cmi.12646
  • Jirage D, Keenan S,C, Waters N. Exploring novel targets for antimalarial drug discovery: plasmodial protein kinases. Infect Disorders Drug Targets. 2010;10(3):134–146.
  • Lucet IS, Tobin A, Drewry D, Wilks AF, Doerig C. Plasmodium kinases as targets for new-generation antimalarials. Future Med Chem. 2012;4(18):2295–2310. doi:10.4155/fmc.12.18323234552
  • Derbyshire ER, Zuzarte‐Luís V, Magalhães AD, et al. Chemical interrogation of the malaria kinome. Chembiochem. 2014;15(13):1920–1930. doi:10.1002/cbic.20140002525111632
  • Ojo KK, Eastman RT, Vidadala R, et al. A specific inhibitor of Pf CDPK4 blocks malaria transmission: chemical-genetic validation. J Infect Dis. 2014;209(2):275–284. doi:10.1093/infdis/jit52224123773
  • Chapman TM, Osborne SA, Wallace C, et al. Optimization of an imidazopyridazine series of inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (Pf CDPK1). J Med Chem. 2014;57(8):3570–3587. doi:10.1021/jm500342d24689770
  • Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci. 2002;99(2):990–995. doi:10.1073/pnas.02263009911782538
  • Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000;275(37):29000–29010. doi:10.1074/jbc.M00445920010887194
  • Eggleson KK, Duffin KL, Goldberg DE. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999;274(45):32411–32417. doi:10.1074/jbc.274.45.3241110542284
  • Combrinck JM, Joanne E, Hearne GR, et al. Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J. 2002;365(2):343–347. doi:10.1042/bj2002079312033986
  • Coronado LM, Nadovich CT, Spadafora C. Malarial hemozoin: from target to tool. Biochimica et Biophysica Acta. 2014;1840(6):2032–2041. doi:10.1016/j.bbagen.2014.02.00924556123
  • Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63:249–267. doi:10.1146/annurev.micro.091208.07342419575561
  • Nixon GL, Pidathala C, Shone AE, et al. Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem. 2013;5(13):1573–1591. doi:10.4155/fmc.13.12124024949
  • Nina PB, Morrisey JM, Ganesan SM, et al. ATP Synthase Complex of Plasmodium falciparum dimeric assembly in mitochondrial membranes and resistance to genetic disruption. J Biol Chem. 2011;286(48):41312–41322. doi:10.1074/jbc.M111.29097321984828
  • Lunev S, Batista FA, Bosch SS, Wrenger C, Groves MR. Identification and validation of novel drug targets for the treatment of Plasmodium falciparum malaria: new insights. InTech. 2016.
  • Sheridan CM, Garcia VE, Ahyong V, DeRisi JL. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar J. 2018;17(1):465. doi:10.1186/s12936-018-2616-730541569
  • Köhler S, Delwiche CF, Denny PW, et al. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997;275(5305):1485–1489. doi:10.1126/science.275.5305.14859045615
  • Wilson R. Parasite plastids: approaching the endgame. Biol Rev. 2005;80(1):129–153. doi:10.1017/S146479310400659115727041
  • Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Biol Sci. 2010;365(1541):749–763. doi:10.1098/rstb.2009.0273
  • Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett. 2011;585(11):1579–1588. doi:10.1016/j.febslet.2011.05.00221557944
  • Padmanaban G, Nagaraj VA, Rangarajan PN. Drugs and drug targets against malaria. Curr Sci. 2007;92(11).
  • McFadden GI, Roos DS. Apicomplexan plastids as drug targets. Trends Microbiol. 1999;7(8):328–333. doi:10.1016/S0966-842X(99)01547-410431206
  • Andersen S, Oloo A, Gordon D, et al. Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in Western Ken. Clin Infect Dis. 1998;26(1):146–150. doi:10.1086/5162819455524
  • Taylor WR, Richie TL, Fryauff DJ, et al. Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clin Infect Dis. 1999;28(1):74–81. doi:10.1086/51507110028075
  • Gaynor BD, Amza A, Kadri B, et al. Impact of mass azithromycin distribution on malaria parasitemia during the low-transmission season in Niger: a cluster-randomized trial. Am J Trop Med Hyg. 2014;90(5):846–851. doi:10.4269/ajtmh.13-037924615132
  • Moore BR, Benjamin JM, Auyeung SO, et al. Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. Br J Clin Pharmacol. 2016;82(1):199–212. doi:10.1111/bcp.1291026889763
  • Teixeira C, Gomes J, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18(10):1555–1572. doi:10.2174/09298671179532832821428877
  • Roy KK. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. Int J Antimicrob Agents. 2017;50(3):287–302. doi:10.1016/j.ijantimicag.2017.04.00628668681
  • Verma S, Dixit R, Pandey KC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol. 2016;7:107. doi:10.3389/fphar.2016.0010727199750
  • Rosenthal PJ. Cysteine proteases of malaria parasites. Int J Parasitol. 2004;34(13–14):1489–1499.15582526
  • McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and pathogenicity of parasitic protozoa. Ann Rev Microbiol. 1993;47(1):821–853. doi:10.1146/annurev.mi.47.100193.0041338257117
  • Debrabant A, Delplace P. Leupeptin alters the proteolytic processing of P126, the major parasitophorous vacuole antigen of Plasmodium falciparum. Mol Biochem Parasitol. 1989;33(2):151–158. doi:10.1016/0166-6851(89)90029-72657420
  • Harris C, Hunte B, Krauss M, Taylor A, Epstein L. Induction of leucine aminopeptidase by interferon-gamma. Identification by protein microsequencing after purification by preparative two-dimensional gel electrophoresis. J Biol Chem. 1992;267(10):6865–6869.1551894
  • Grembecka J, Mucha A, Cierpicki T, Kafarski P. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. J Med Chem. 2003;46(13):2641–2655. doi:10.1021/jm030795v12801228
  • McGowan S, Porter CJ, Lowther J, et al. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci. 2009;106(8):2537–2542. doi:10.1073/pnas.080739810619196988
  • Nankya-Kitaka M, Curley G, Gavigan C, Bell A, Dalton J. Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res. 1998;84(7):552–558. doi:10.1007/s0043600504479694371
  • Zhang R, Suwanarusk R, Malleret B, et al. A basis for rapid clearance of circulating ring-stage malaria parasites by the spiroindolone KAE609. J Infect Dis. 2016;213(1):100–104. doi:10.1093/infdis/jiv35826136472
  • Blascod DL, Wittyd MJ, Doninid C, et al.UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria 2. 2018.
  • Schiafino-Ortega S, Baglioni E, Pérez-Moreno G, et al. 1, 2-Diphenoxiethane salts as potent antiplasmodial agents. Bioorg Med Chem Lett. 2018;28(14):2485–2489. doi:10.1016/j.bmcl.2018.05.06029880399
  • Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbio J. 2019;11:100052. doi:10.1016/j.humic.2019.01.001
  • Almeida MR, Darin JD, Hernandes LC, Ramos M, Antunes LMG, Freitas O. Genotoxicity assessment of Copaiba oil and its fractions in Swiss mice. Genet Mol Biol. 2012;35(3):664–672. doi:10.1590/S1415-4757201200500005223055807
  • Batchvarova M, Shan S, Zennadi R, et al. Sevuparin Reduces Adhesion of Both Sickle Red Cells and Leukocytes to Endothelial Cells in vitro and Inhibits Vaso-Occlusion in Vivo. Washington, DC: American Society of Hematology; 2013.
  • Mathews ES, John ARO. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Research. 2018;7.
  • Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206(21):3735–3744. doi:10.1242/jeb.0058914506208
  • Ogeto T, Ndubi F, Murithi M, et al. Malaria vaccines targeting the pre-erythrocytic stage: a scoping review. F1000Research. 2020;9(680):680.
  • Reis RA, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: past and present. Arch Biochem Biophys. 2017;632:175–191. doi:10.1016/j.abb.2017.06.01928666740
  • Rottmann M, Jonat B, Gumpp C, et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob Agents Chemother. 2020;64(4).
  • Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. Int J Parasitol Drugs Drug Resist. 2015;5(3):149–162.26401486
  • Phyo AP, Jittamala P, Nosten FH, et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label Phase 2 trial. Lancet Infect Dis. 2016;16(1):61–69. doi:10.1016/S1473-3099(15)00320-526448141