713
Views
7
CrossRef citations to date
0
Altmetric
Review

Bacteriophages Against Pathogenic Bacteria and Possibilities for Future Application in Africa

ORCID Icon
Pages 17-31 | Published online: 06 Jan 2021

References

  • Byarugaba DK. A view on antimicrobial resistance in developing countries and responsible risk factors. Int J Antimicrob Agents. 2004;24(2):105–110. doi:10.1016/j.ijantimicag.2004.02.01515288307
  • Kutter E, Sulakvelidze A, eds. Bacteriophages: Biology and Applications. CRC Press; 2005.
  • Abedon ST, ed. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses. Cambridge University Press; 2008.
  • Chanishvili N. Phage therapy--history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3–40. doi:10.1016/B978-0-12-394438-2.00001-3
  • Ashelford KE, Day MJ, Fry JC. Elevated abundance of bacteriophage infecting bacteria in soil. AEM. 2003;69(1):285–289. doi:10.1128/AEM.69.1.285-289.2003
  • Batinovic S, Wassef F, Knowler SA, et al. Bacteriophages in natural and artificial environments. Pathogens. 2019;8(3):100. doi:10.3390/pathogens8030100
  • Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 2017;12(12):12. doi:10.1371/journal.pone.0189621
  • Clokie MRJ, Kropinski A, eds. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Humana Press; 2009. doi:10.1007/978-1-60327-164-6
  • Forde A, Hill C. Phages of life - the path to pharma. Br J Pharmacol. 2018;175(3):412–418. doi:10.1111/bph.1410629266197
  • Schooley RT, Biswas B, Gill JJ, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10). doi:10.1128/AAC.00954-17
  • Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48. doi:10.1016/S0065-2164(10)70007-1
  • Azizian R, Nasab SDM, Ahmadi NA. Bacteriophage as a Novel Antibacterial Agent in Industry and Medicine. J Paramed Sci. 2013; 4(4):93–101.
  • Chen LK, Kuo S-C, Chang K-C, et al. Clinical antibiotic-resistant Acinetobacter baumannii strains with higher susceptibility to environmental phages than antibiotic-sensitive strains. Sci Rep. 2017;7. doi:10.1038/s41598-017-06688-w
  • Oliveira H, Melo LDR, Santos SB, et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol. 2013;87(8):4558–4570. doi:10.1128/JVI.03277-1223408602
  • Summers WC. Bacteriophage therapy. Annu Rev Microbiol. 2001;55(1):437–451. doi:10.1146/annurev.micro.55.1.43711544363
  • Hamdi S, Rousseau GM, Labrie SJ, et al. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep. 2017;7(1). doi:10.1038/srep40349
  • Born Y, Fieseler L, Marazzi J, Lurz R, Duffy B, Loessner MJ. Novel virulent and broad-host-range erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to enterobacteriaceae phages. Appl Environ Microbiol. 2011;77(17):5945–5954. doi:10.1128/AEM.03022-1021764969
  • Ackermann H-W. Phage classification and characterization. Methods Mol Biol. 2009;501:127–140. doi:10.1007/978-1-60327-164-6_1319066817
  • ICTV. International Committee on Taxonomy of Viruses. ICTV; 2019 Available from: https://talk.ictvonline.org/taxonomy/p/taxonomy-history?taxnode_id=201904780. Accessed 96, 2020.
  • Ackermann H-W. 5500 Phages examined in the electron microscope. Arch Virol. 2007;152(2):227–243. doi:10.1007/s00705-006-0849-117051420
  • Hope CK, Packer S, Wilson M, Nair SP. The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother. 2009;64(1):59–61. doi:10.1093/jac/dkp15719411679
  • Fernández L, Gutiérrez D, García P, Rodríguez A. The perfect bacteriophage for therapeutic applications—a quick guide. Antibiotics. 2019;8(3):126. doi:10.3390/antibiotics8030126
  • Alexander S, Barrow P. Phage therapy in animals and agribusiness In: Kutter E, Sulakvelidze A, editors. Bacteriophages: Biology and Applications. CRC Press; 2005.
  • Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Appl Environ Microbiol. 2008;74(20):6230–6238. doi:10.1128/aem.01465-0818723643
  • Bardina C, Spricigo DA, Cortés P, Llagostera M. Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol. 2012;78(18):6600–6607. doi:10.1128/aem.01257-1222773654
  • Barrow P, Lovell M, Berchieri A. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol. 1998;5(3):294–298. doi:10.1128/CDLI.5.3.294-298.1998.9605979
  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;2018(1):60–66. doi:10.1093/emph/eoy00529588855
  • Chhibber S, Kaur S, Kumari S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol. 2008;57(12):1508–1513. doi:10.1099/jmm.0.2008/002873-019018021
  • Curtin JJ, Donlan RM. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 2006;50(4):1268–1275. doi:10.1128/AAC.50.4.1268-1275.200616569839
  • Kumari S, Harjai K, Chhibber S. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol. 2009;19(6):622–628. doi:10.4014/jmb.0808.49319597322
  • Kumari S, Harjai K, Chhibber S. Bacteriophage treatment of burn wound infection caused by Pseudomonas aeruginosa PAO in BALB/c Mice. Am J Biomed Sci. 2009;385–394. doi:10.5099/aj090400385
  • Verma V, Harjai K, Chhibber S. Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling. 2010;26(6):729–737. doi:10.1080/08927014.2010.51119620711894
  • Qadir MI, Mobeen T, Masood A. Phage therapy: progress in pharmacokinetics. Braz J Pharm Sci. 2018;54(1). doi:10.1590/s2175-97902018000117093
  • Peng Q, Yuan Y. Characterization of a newly isolated phage infecting pathogenic Escherichia coli and analysis of its mosaic structural genes. Sci Rep. 2018;8(1):8086. doi:10.1038/s41598-018-26004-429795390
  • Dunne M, Rupf B, Tala M, et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 2019;29(5):1336–1350.e4. doi:10.1016/j.celrep.2019.09.06231665644
  • Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295(2):211–217. doi:10.1111/j.1574-6968.2009.01588.x19453513
  • Di Giovine M, Salone B, Martina Y, et al. Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology. 2001;282(1):102–112. doi:10.1006/viro.2000.080911259194
  • Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104(27):11197–11202. doi:10.1073/pnas.070462410417592147
  • WHO. WHO | Ten years in public health 2007–2017. WHO; 2017 Available from: http://www.who.int/publications/10-year-review/en/. Accessed 91, 2020.
  • Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot. 2017;70(1):3–24. doi:10.1038/ja.2016.72
  • Slopek S, Beata W-D, Dabrowski M, Ali na -K-K. Result of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz). 1987;35(5):15.
  • Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659. doi:10.1128/AAC.45.3.649-659.200111181338
  • Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. WJGPT. 2017;8(3):162. doi:10.4292/wjgpt.v8.i3.16228828194
  • Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz). 1999;47(5):267–274.10604231
  • Abedon ST. Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics (Basel). 2019;8(4). doi:10.3390/antibiotics8040182
  • Taylor M, Razieh K, Sandra M, Michael JR Bacteriophage-antibiotic combinations: a promising alternative for refractory infections? ContagionLive; 2 19, 2020 Available from: https://www.contagionlive.com/publications/contagion/2020/february/bacteriophageantibiotic-combinations-a-promising-alternative-for-refractory-infections. Accessed 91, 2020.
  • Merabishvili M, Vos DD, Verbeken G, et al. Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104: h4Strain from the 2011 outbreak in Germany. PLoS One. 2012;7(12):e52709. doi:10.1371/journal.pone.005270923285164
  • McVay CS, Velásquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934–1938. doi:10.1128/AAC.01028-0617387151
  • Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol. 2002;41(7):453–458. doi:10.1046/j.1365-4362.2002.01451.x12121566
  • Międzybrodzki R, Harper DR, Abedon ST, et al. Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. Springer International Publishing; 2018. doi:10.1007/978-3-319-40598-8_31-1
  • Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages—review. Folia Microbiol. 2011;56(3):191–200. doi:10.1007/s12223-011-0039-821625877
  • WHO. WHO | Health data and statistics. WHO; 11 2013 Available from: http://www.who.int/healthinfo/statistics/en/. Accessed 103, 2020.
  • Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–440. doi:10.1016/S0140-6736(14)61698-625280870
  • Kotloff KL, Winickoff JP, Ivanoff B, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ. 1999;16.
  • Gudina I, Gizachew Z, Woyessa D, Kassa T. Isolation of bacteriophage and assessment of its activity against biofilms of uropathogenic Escherichia coli in Jimma Town, South Western Ethiopia. Am J Curr Microbiol. 2018;6(1):52–66.
  • Hailemichael T. Isolation of bacteriophage against biofilm forming and MDR Acinetobacter baumannii from surface of medical equipment and floor in Jimma University Medical Center, South West, Ethiopia {disseration}. Jimma, Jimma University; 1 2020.
  • Kakou-Ngazoa ES, Audrey AA, Krylova K, et al. First novel phages from rodents with lytic activity on clinical Enterobacteriaceae strains: initiation for phage therapy in West Africa. Afr J Microbiol Res. 2020;14(6):280–285. doi:10.5897/AJMR2020.9329
  • Leta A, Yohannes M, Kassa T. Assessment of therapeutic potential of bacteriophages to control Escherichia coli infection in Swiss mice model. Ethiop J App Sci Tech. 2017;8(2):73–83.
  • Maina AN, Mwaura FB, Oyugi J, Goulding D, Toribio AL, Kariuki S. Characterization of Vibrio cholerae bacteriophages isolated from the environmental waters of the Lake Victoria Region of Kenya. Curr Microbiol. 2014;68(1):64–70. doi:10.1007/s00284-013-0447-x23982202
  • Abul-Hassan HS, El-Tahan K, Gomaa R, Massoud B. Bacteriophage therapy of pseudomonas burn wound sepsis. Ann Burns Fire Disasters. 1990;3(4).
  • Simpkin VL, Renwick MJ, Kelly R, Mossialos E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot (Tokyo). 2017;70(12):1087–1096. doi:10.1038/ja.2017.12429089600
  • Edqvist L-E, Pedersen KB. 9. Antimicrobials as growth promoters: resistance to common sense. In: Harremoës P et al. Late Lessons from Early Warnings: The Precautionary Principle 1896–2000. EU; 2002:223. Available from: https://www.eea.europa.eu/publications/environmental_issue_report_2001_22. Accessed October 20, 2020.
  • Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci. 2019;98(4):1791–1804. doi:10.3382/ps/pey53930544256
  • Van TTH, Yidana Z, Smooker PM, Coloe PJ. Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. J Glob Antimicrob Resist. 2020;20:170–177. doi:10.1016/j.jgar.2019.07.03131401170
  • Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–136. doi:10.3855/jidc.357324518621
  • Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol J. 2019;16(1):155. doi:10.1186/s12985-019-1260-331831017
  • Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–235. doi:10.4161/viru.2599123973944
  • Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology. 1982;128(2):307–318. doi:10.1099/00221287-128-2-307
  • Smith HMB, Shaw KM. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol. 1987;133(5):1111–1126. doi:10.1099/00221287-133-5-11113309177
  • Grinyova K.Application of biological bacteriophage-based for diagnosis, prevention and treatment of fish pseudomonosis. Eur Stud Sci J. 2014;2.
  • Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14(1):179. doi:10.1186/s12985-017-0849-728915819
  • Svircev A, Roach D, Castle A. Framing the future with bacteriophages in agriculture. Viruses. 2018;10(5):5. doi:10.3390/v10050218
  • Johnson TJ, Shank JM, Johnson JG. Current and potential treatments for reducing campylobacter colonization in animal hosts and disease in humans. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.00487.
  • Narayanasamy P. Microbial Plant Pathogens-Detection and Disease Diagnosis: Bacterial and Phytoplasmal Pathogens, Vol. 2. Netherlands: Springer; 2011. doi:10.1007/978-90-481-9769-9
  • Mendonça L, Zambolim L, Jl B Bacterial citrus diseases: major threats and recent progress. J Bacteriol Mycol. 2017;5:4–2017. doi:10.15406/JBMOA.2017.05.00143
  • Besarab NV. Can bacteriophages combat bacterial diseases of plants? 2018 Available from: http://www.global-engage.com/agricultural-biotechnology/bacteriophages-combat-bacterial-diseases-plants/. Accessed 95, 2020.
  • Pinheiro LAM, Pereira C, Frazão C, Balcão VM, Almeida A. Efficiency of phage φ6 for biocontrol of Pseudomonas syringae pv. Syringae: an in vitro preliminary study. Microorganisms. 2019;7(9). doi:10.3390/microorganisms7090286
  • Sarhan WA, Azzazy HM. Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther. 2015;13(1):91–101. doi:10.1586/14787210.2015.99038325488141
  • Park SC, Nakai T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu, Plectoglossis altivelis. Dis Aquat Org. 2003;53:33–39. doi:10.3354/dao053033
  • Schnabel EL, Jones AL. Isolation and characterization of FiveErwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Appl Environ Microbiol. 2001;67(1):59–64. doi:10.1128/AEM.67.1.59-64.200111133428
  • Wei C, Liu J, Maina AN, et al. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol Sin. 2017;32(6):476–484. doi:10.1007/s12250-017-3987-629168148
  • Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00338.
  • Jones JB, Vallad GE, Iriarte FB, et al. Considerations for using bacteriophages for plant disease control. Bacteriophage. 2012;2(4):e23857. doi:10.4161/bact.23857
  • Civerolo EL, Keil HL. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology. 1969.
  • Erskine JM. Characteristics of Erwinia amylovora bacteriophage and its possible role in the epidemiology of fire blight. Can J Microbiol. 1973;19(7):837–845. doi:10.1139/m73-1344125539
  • Ritchie D, Klos E Isolation of Erwinia amylovora bacteriophage from aerial parts of apple trees. Phytopathology. 1977;36:101–104. doi:10.1094/Phyto-67-101
  • Gill JJ, Svircev AM, Smith R, Castle AJ. Bacteriophages of Erwinia amylovora. Appl Environ Microbiol. 2003;69(4):2133–2138. doi:10.1128/AEM.69.4.2133-2138.200312676693
  • Malnoy M, Faize M, Venisse J-S, Geider K, Chevreau E. Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep. 2005;23(9):632–638. doi:10.1007/s00299-004-0855-215375629
  • Sharma R, Pielstick BA, Bell KA, et al. A novel, highly related jumbo family of bacteriophages that were isolated against Erwinia. Front Microbiol. 2019;10:1533. doi:10.3389/fmicb.2019.0153331428059
  • Marcó MB, Reinheimer JA, Quiberoni A. Phage adsorption to Lactobacillus plantarum: influence of physiological and environmental factors. Int J Food Microbiol. 2010;138(3):270–275. doi:10.1016/j.ijfoodmicro.2010.01.00720153539
  • Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol. 2014;5. doi:10.3389/fmicb.2014.00051.
  • Watanabe R, Matsumoto T, Sano G, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 2007;51(2):446–452. doi:10.1128/AAC.00635-0617116686
  • Hendrix RW. Bacteriophage genomics. Curr Opin Microbiol. 2003;6(5):506–511. doi:10.1016/j.mib.2003.09.00414572544
  • Hayes S, Mahony J, Nauta A, van Sinderen D. Metagenomic approaches to assess bacteriophages in various environmental niches. Viruses. 2017;9(6):6. doi:10.3390/v9060127
  • Czajkowski R, Jackson RW, Lindow SE. Editorial: environmental bacteriophages: from biological control applications to directed bacterial evolution. Front Microbiol. 2019;10:1830. doi:10.3389/fmicb.2019.0183031440230
  • Clokie M PHAGE | Mary Ann Liebert, Inc., publishers. nn Liebert; 2020 Available from: https://home.liebertpub.com/publications/phage/652/overview#aims. Accessed 93, 2020
  • Francis T. Bacteriophage aims & scope. Bacteriophages. 2020.
  • NCBI P. (Bacteriophage[MeSH Terms]) AND “last 10 years”[PDat] - PMC – NCBI; 2020 Available from: https://www.ncbi.nlm.nih.gov/pmc/?term=(Bacteriophage%5BMeSH+Terms%5D)+AND+%22last+10+years%22%5BPDat%5D. Accessed 93, 2020.
  • ISO. Water quality — detection and enumeration of bacteriophages — part 1: enumeration of F-specific RNA bacteriophages. ISO; 2017 Available from: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/87/18794.html. Accessed 91, 2020.
  • Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis-Kawa Z. Phage life cycles behind bacterial biodiversity. Curr Med Chem. 2017;24(36):3987–4001. doi:10.2174/092986732466617041310013628412903
  • Olsen JE, Brown DJ, Skov MN, Christensen JP. Bacterial typing methods suitable for epidemiological analysis. applications in investigations of salmonellosis among livestock. Vet Q. 1993;15(4):125–135. doi:10.1080/01652176.1993.96943908122347
  • Mohammed M. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium? BMC Res Notes. 2017;10(1):1–7. doi:10.1186/s13104-017-2878-028057050
  • Fauconnier A. Phage therapy regulation: from night to dawn. Viruses. 2019;11(4):352. doi:10.3390/v11040352
  • Viridax. ViridaxTM; 2020 Availabble from: http://www.dreamingrock.com/viridax/eviridax/cphage.htm. Accessed 93, 2020.
  • WHO, editor. Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials. Volume 2: Good Manufacturing Practices and Inspection. 2nd updated ed. World Health Organization; 2007.
  • Intestifag. Intestifag® polyvalent bacteriophage. Bacteriophages; 2020 Available from: https://bacteriophages.info/en/bacteriophage/intesifag/. Accessed 93, 2020.
  • Abedon. Phage Companies - Bacteriophage Ecology Group. Phage companies; 2018 Available from: http://companies.phage.org/. Accessed 93, 2020.
  • Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay J-P. European regulatory conundrum of phage therapy. Future Microbiol. 2007;2(5):485–491. doi:10.2217/17460913.2.5.48517927471
  • García R, Latz S, Romero J, Higuera G, García K, Bastías R. Bacteriophage production models: an overview. Front Microbiol. 2019;10:1187. doi:10.3389/fmicb.2019.0118731214139
  • Perepanova TS, Darbeeva OS, Kotliarova GA, et al. [The efficacy of bacteriophage preparations in treating inflammatory urologic diseases]. Urol Nefrol (Mosk). 1995;5:14–17. Russian.
  • Nikolich MP, Filippov AA. Bacteriophage therapy: developments and directions. Antibiotics (Basel). 2020;9:3. doi:10.3390/antibiotics9030135
  • Rose T, Verbeken G, Vos DD, et al. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma. 2014;4(2):66–73.25356373
  • Kochetkova VA, Mamontov AS, Moskovtseva RL, et al. [Phagotherapy of postoperative suppurative-inflammatory complications in patients with neoplasms]. Sov Med. 1989;6:23–26. Russian.
  • Fadlallah A, Chelala E, Legeais J-M. Corneal Infection Therapy with Topical Bacteriophage Administration. Open Ophthalmol J. 2015;9(1):167–168. doi:10.2174/187436410150901016726862360
  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25(Sup7):S27–S33. doi:10.12968/jowc.2016.25.Sup7.S2726949862
  • Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 2016;4:124–137. doi:10.1016/j.ebiom.2015.12.02326981577
  • Jun JW, Shin TH, Kim JH, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic–resistant O3: K6 pandemic clinical strain. J Infect Dis. 2014;210(1):72–78. doi:10.1093/infdis/jiu05924558119
  • Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 2005;49(3):1220–1221. doi:10.1128/AAC.49.3.1220-1221.200515728933
  • El-Gohary F, We H, Gr H, Nc R, Zy Z, Am D. Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult Sci. 2014;93(11):2788–2792. doi:10.3382/ps.2014-0428225214555
  • Park SC, Shimamura I, Fukunaga M, Mori K-I, Nakai T. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol. 2000;66(4):1416–1422. doi:10.1128/AEM.66.4.1416-1422.200010742221
  • Akmal M, Rahimi-Midani A, Hafeez-ur-Rehman M, Hussain A, Choi T-J. Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens. 2020;9(3):215. doi:10.3390/pathogens9030215
  • Sheng H, Knecht HJ, Kudva IT, Hovde CJ. Application of bacteriophages to control intestinal Escherichia coli O157: H7Levels in ruminants. Appl Environ Microbiol. 2006;72(8):5359–5366. doi:10.1128/AEM.00099-0616885287
  • Adriaenssens EM, Van Vaerenbergh J, Vandenheuvel D, et al. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani.’ Johnson EA, ed. PLoS One. 2012;7(3):e33227. doi:10.1371/journal.pone.003322722413005
  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol. 2011;77(12):4155–4162. doi:10.1128/AEM.02847-1021498752
  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 2004;88(7):736–740. doi:10.1094/PDIS.2004.88.7.73630812485
  • Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF. Control of pierce’s disease by phage. PLoS One. 2015;10(6):6. doi:10.1371/journal.pone.0128902
  • Lang JM, Gent DH, Schwartz HF. Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis. 2007;91(7):871–878. doi:10.1094/PDIS-91-7-087130780399
  • Lim J-A. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J Microbiol Biotechnol. 2013;23(8):1147–1153. doi:10.4014/jmb.1304.0400123727798
  • Goyer C. Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can J Plant Pathol. 2005;27(2):210–216. doi:10.1080/07060660509507218
  • Balogh B, Canteros BI, Stall RE, Jones JB. Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis. 2008;92(7):1048–1052. doi:10.1094/PDIS-92-7-104830769518