258
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Phenotypic and Molecular Characteristics of Community-Associated Staphylococcus aureus Infection in Neonates

, , , , , , & ORCID Icon show all
Pages 4589-4600 | Published online: 22 Dec 2020

References

  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661. doi:10.1128/CMR.00134-1426016486
  • Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, Epson E. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections — united States. MMWR Morb Mortal Wkly Rep. 2019;68:214–219.30845118
  • Liu Y, Xu Z, Yang Z, Sun J, Ma L. Characterization of community-associated Staphylococcus aureus from skin and soft-tissue infections: a multicenter study in China. Emerg Microbes Infect. 2016;5:e127. doi:10.1038/emi.2016.12827999423
  • Harris SR, Cartwright EJP, Török ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:130–136. doi:10.1016/S1473-3099(12)70268-223158674
  • Brown NM, Reacher M, Rice W, et al. An outbreak of meticillin-resistant Staphylococcus aureus colonization in a neonatal intensive care unit: use of a case-control study to investigate and control it and lessons learnt. J Hosp Infect. 2019;103(1):35–43. doi:10.1016/j.jhin.2019.05.00931132394
  • Cheng VCC, Wong SC, Cao H, et al. Whole-genome sequencing data-based modeling for the investigation of an outbreak of community-associated methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit in Hong Kong. Eur J Clin Microbiol Infect Dis. 2019;38:563–573.30680562
  • Maraqa NF, Aigbivbalu L, Masnita-Iusan C, et al. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus colonization and infection among infants at a level III neonatal intensive care unit. Am J Infect Control. 2011;39:35–41. doi:10.1016/j.ajic.2010.07.01321281885
  • de Lencastre H, Geng W, Qi Y, et al. Epidemiology of Staphylococcus aureus in neonates on admission to a Chinese neonatal intensive care unit. PLoS One. 2020;15:e0211845.32053585
  • Washam M, Woltmann J, Haberman B, Haslam D, Staat MA. Risk factors for methicillin-resistant Staphylococcus aureus colonization in the neonatal intensive care unit: A systematic review and meta-analysis. Am J Infect Control. 2017;45:1388–1393. doi:10.1016/j.ajic.2017.06.02129195583
  • Giuffrè M, Amodio E, Bonura C, et al. Methicillin-resistant Staphylococcus aureus nasal colonization in a level III neonatal intensive care unit: incidence and risk factors. Am J Infect Control. 2015;43:476–481. doi:10.1016/j.ajic.2014.12.02725726131
  • Lavie-Nevo K, Srigley JA, Al-Rawahi GN, et al. Prevalence and clinical impact of methicillin-resistant Staphylococcus aureus colonization among infants at a level III neonatal intensive care unit. Am J Infect Control. 2019;47:1336–1339. doi:10.1016/j.ajic.2019.04.17331253554
  • Murai T, Okazaki K, Kinoshita K, et al. Comparison of USA300 with non-USA300 methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Int J Infect Dis. 2019;79:134–138. doi:10.1016/j.ijid.2018.11.02030503654
  • Laabei M, Recker M, Rudkin JK, et al. Predicting the virulence of MRSA from its genome sequence. Genome Res. 2014;24:839–849. doi:10.1101/gr.165415.11324717264
  • Centers for Disease Control and Prevention. Community-associated MRSA information for clinicians. infection control topics. centers for disease control and prevention. Atlanta, GA Available from: http://www.cdc.gov/ncidod/dhqp/ar_mrsa_ca_clinicians.html#4. Accessed 23, 2005.
  • Zhang K, Sparling J, Chow BL, et al. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2004;42:4947–4955. doi:10.1128/JCM.42.11.4947-4955.200415528678
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 27th Informational Supplement. M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281.21793988
  • Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones ofStaphylococcus aureus. J Clin Microbiol. 2000;38:1008–1015. doi:10.1128/JCM.38.3.1008-1015.200010698988
  • Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:1518–1530. doi:10.1128/JB.186.5.1518-1530.200414973027
  • Zhang K, McClure J-A, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43:5026–5033. doi:10.1128/JCM.43.10.5026-5033.200516207957
  • Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother. 1999;43:1062–1066. doi:10.1128/AAC.43.5.106210223914
  • Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis. 2000;37:127–137. doi:10.1016/S0732-8893(00)00130-910863107
  • Wamel W, Rooijakkers SHM, Ruyken M, Kessel K, Strijp J. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188:1310–1315. doi:10.1128/JB.188.4.1310-1315.200616452413
  • Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett. 2005;246:191–198. doi:10.1016/j.femsle.2005.04.00715899405
  • Jarraud S, Mougel C, Thioulouse J, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70:631–641. doi:10.1128/IAI.70.2.631-641.200211796592
  • McClure J-A, Conly JM, Lau V, et al. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J Clin Microbiol. 2006;44:1141–1144. doi:10.1128/JCM.44.3.1141-1144.200616517915
  • Jolley KA, Feil EJ, Chan MS, Maiden MC. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001;17:1230–1231. doi:10.1093/bioinformatics/17.12.123011751234
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W9. doi:10.1093/nar/gkz23930931475
  • Pocket book of hospital care for children: guidelines for the management of common childhood illnesses. 2nd edition. Geneva: World Health Organization; 2013 Available from: https://www.ncbi.nlm.nih.gov/books/NBK154447/. Accessed 127, 2020.
  • Li JY, Chen SQ, Yan YY, et al. Identification and antimicrobial resistance of pathogens in neonatal septicemia in China—A meta-analysis. Int J Infect Dis. 2018;71:89–93. doi:10.1016/j.ijid.2018.04.79429689386
  • Darboe S, Dobreniecki S, Jarju S, et al. Prevalence of Panton-Valentine Leukocidin (PVL) and antimicrobial resistance in community-acquired clinical Staphylococcus aureus in an urban gambian hospital: a 11-year period retrospective pilot study. Front Cell Infect Microbiol. 2019;9:170.31192162
  • Liang B, Mai J, Liu Y, et al. Prevalence and characterization of Staphylococcus aureus isolated from women and children in Guangzhou, China. Front Microbiol. 2018;9:2790. doi:10.3389/fmicb.2018.0279030505300
  • Salazar-Ospina L, Jiménez JN. High frequency of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in children under 1 year old with skin and soft tissue infections. J Pediatr. 2018;94:380–389. doi:10.1016/j.jped.2017.06.020
  • Wang X, Liu Q, Zhang H, et al. Molecular characteristics of community-associated Staphylococcus aureus isolates from pediatric patients with bloodstream infections between 2012 and 2017 in Shanghai, China. Front Microbiol. 2018;9:1211. doi:10.3389/fmicb.2018.0121129928269
  • Imani Fooladi AA, Ashrafi E, Tazandareh SG, et al. The distribution of pathogenic and toxigenic genes among MRSA and MSSA clinical isolates. Microb Pathog. 2015;81:60–66. doi:10.1016/j.micpath.2015.03.01325778391
  • Deinhardt-Emmer S, Sachse S, Geraci J, et al. Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. J Hosp Infect. 2018;100:309–315. doi:10.1016/j.jhin.2017.12.01129253623
  • Hulten KG, Mason EO, Lamberth LB, Forbes AR, Revell PA, Kaplan SL. Analysis of invasive community-acquired methicillin-susceptible staphylococcus aureus infections during a period of declining community acquired methicillin-resistant staphylococcus aureus infections at a large Children’s Hospital. Pediatr Infect Dis J. 2018;37:235–241. doi:10.1097/INF.000000000000175328859018
  • Wang Y, Liu Q, Liu Q, et al. Phylogenetic analysis and virulence determinant of the host-adapted Staphylococcus aureus lineage ST188 in China. Emerg Microbes Infect. 2018;7:45. doi:10.1038/s41426-018-0048-729593254
  • Li X, Zhou Y, Zhan X, Huang W, Wang X. Breast milk is a potential reservoir for livestock-associated staphylococcus aureus and community-associated Staphylococcus aureus in Shanghai, China. Front Microbiol. 2017;8:2639.29375508
  • Lin J, Wu C, Yan C, et al. A prospective cohort study of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus carriage in neonates: the role of maternal carriage and phenotypic and molecular characteristics. Infect Drug Resist. 2018;11:555–565. doi:10.2147/IDR.S15752229731644
  • King JM, Kulhankova K, Stach CS, Vu BG, Salgado-Pabón W. Phenotypes and Virulence among Staphylococcus aureus USA100, USA200, USA300, USA400, and USA600 Clonal Lineages. mSphere. 2016;1:e00071–16. doi:10.1128/mSphere.00071-1627303750
  • Guo D, Liu Y, Han C, Chen Z, Ye X. Phenotypic and molecular characteristics of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from pigs: implication for livestock-association markers and vaccine strategies. Infect Drug Resist. 2018;11:1299–1307. doi:10.2147/IDR.S17362430197527
  • Köck R, Schaumburg F, Mellmann A, et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One. 2013;8:e55040.23418434
  • Eibach D, Nagel M, Hogan B, et al. Nasal Carriage of Staphylococcus aureus among children in the ashanti region of ghana. PLoS One. 2017;12:e0170320. doi:10.1371/journal.pone.017032028107412
  • Mrochen DM, Grumann D, Schulz D, et al. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities. Int J Med Microbiol. 2018;308:598–606. doi:10.1016/j.ijmm.2017.11.00629174495
  • Williamson DA, Ritchie SR, Roberts SA, et al. Clinical and molecular epidemiology of community-onset invasive Staphylococcus aureus infection in New Zealand children. Epidemiol Infect. 2014;142:1713–1721. doi:10.1017/S095026881400005324534254
  • Kurt K, Rasigade J-P, Laurent F, et al. Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities. PLoS One. 2013;8:e58155.23505464