204
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Distribution of β-Lactamase Genes and Genetic Context of blaKPC-2 in Clinical Carbapenemase-Producing Klebsiella pneumoniae Isolates

ORCID Icon, , , , , , , , , , , , , & show all
Pages 237-247 | Published online: 26 Jan 2021

References

  • Kitchel B, Rasheed JK, Endimiani A, et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010;54(10):4201–4207. doi:10.1128/aac.00008-1020660684
  • Brandt C, Viehweger A, Singh A, et al. Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Sci Rep. 2019;9(1):11223. doi:10.1038/s41598-019-47758-531375735
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228–236. doi:10.1016/s1473-3099(09)70054-419324295
  • Nishida S, Ono Y. Genomic analysis of a panresistant Klebsiella pneumoniae sequence type 11 identified in Japan in 2016. Int J Antimicrob Agents. 2020;55(4):105854. doi:10.1016/j.ijantimicag.2019.11.01131770626
  • Peirano G, Bradford PA, Kazmierczak KM, et al. Importance of clonal complex 258 and IncF(K2-like) plasmids among a global collection of Klebsiella pneumoniae with bla(KPC). Antimicrob Agents Chemother. 2017;61(4). doi:10.1128/aac.02610-16
  • Chen L, Mathema B, Pitout JD, et al. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio. 2014;5(3):e01355–14. doi:10.1128/mBio.01355-1424961694
  • Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46. doi:10.1016/s1473-3099(17)30489-928864030
  • Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother. 2011;55(11):5370–5373. doi:10.1128/aac.05202-1121844325
  • Mathers AJ, Cox HL, Kitchel B, et al. Molecular dissection of an outbreak of carbapenem-resistant enterobacteriaceae reveals Intergenus KPC carbapenemase transmission through a promiscuous plasmid. mBio. 2011;2(6):e00204–11. doi:10.1128/mBio.00204-1122045989
  • Fu P, Tang Y, Li G, et al. Pandemic spread of bla((KPC-2)) among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. Int J Antimicrob Agents. 2019;54(2):117–124. doi:10.1016/j.ijantimicag.2019.03.01430885806
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100-S28 Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Liu L, Feng Y, Tang G, et al. Carbapenem-resistant isolates of the Klebsiella pneumoniae complex in Western China: the common ST11 and the surprising Hospital-specific types. Clin Infect Dis. 2018;67(suppl_2):S263–s265. doi:10.1093/cid/ciy66230423053
  • Ding B, Shen Z, Hu F, et al. In vivo acquisition of Carbapenemase Gene bla(KPC-2) in multiple species of Enterobacteriaceae through horizontal transfer of insertion sequence or plasmid. Front Microbiol. 2016;7:1651. doi:10.3389/fmicb.2016.0165127818649
  • Yang Y, Chen J, Lin D, et al. Prevalence and drug resistance characteristics of carbapenem-resistant Enterobacteriaceae in Hangzhou, China. Front Med. 2018;12(2):182–188. doi:10.1007/s11684-017-0529-428687975
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Dallenne C, Da Costa A, Decré D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–495. doi:10.1093/jac/dkp49820071363
  • Doumith M, Ellington MJ, Livermore DM, et al. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63(4):659–667. doi:10.1093/jac/dkp02919233898
  • Marques C, Belas A, Aboim C, et al. Evidence of sharing of Klebsiella pneumoniae strains between healthy companion animals and cohabiting humans. J Clin Microbiol. 2019;57(6). doi:10.1128/jcm.01537-18
  • Xu T, Wang J, Ying J, et al. CharacterizationCharacterisation of a class 1 integron associated with the formation of quadruple bla(GES-5) cassettes from an IncP-1β group plasmid in Pseudomonas aeruginosa. Int J Antimicrob Agents. 2018;52(4):485–491. doi:10.1016/j.ijantimicag.2018.07.00230012438
  • Villa L, García-Fernández A, Fortini D, et al. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010;65(12):2518–2529. doi:10.1093/jac/dkq34720935300
  • Shen P, Zhang Y, Li G, et al. Characterization of the genetic environment of the blaKPC-2 gene among Klebsiella pneumoniae isolates from a Chinese Hospital. Braz J Infect Dis. 2016;20(4):384–388. doi:10.1016/j.bjid.2016.04.00327183358
  • Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. doi:10.1101/gr.215087.11628298431
  • Chen Q, Zhou W, Qian C, et al. OXA-830, a novel chromosomally encoded extended-spectrum class D β-lactamase in aeromonas simiae. Front Microbiol. 2019;10:2732. doi:10.3389/fmicb.2019.0273231849884
  • Remm M, Storm CE, Sonnhammer EL. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001;314(5):1041–1052. doi:10.1006/jmbi.2000.519711743721
  • Liu Y, Wu F, Chen Q, et al. Comparative genomics analysis of Raoultella planticola S25 isolated from duck in China, with florfenicol resistance. Comp Immunol Microbiol Infect Dis. 2020;68:101398. doi:10.1016/j.cimid.2019.10139831775114
  • Coppi M, Di Pilato V, Monaco F, et al. Ceftazidime-avibactam resistance associated with increased bla (KPC-3) gene copy number mediated by pKpQIL plasmid derivatives in sequence type 258 Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(4). doi:10.1128/aac.01816-19
  • García-Fernández A, Miriagou V, Papagiannitsis CC, et al. An ertapenem-resistant extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother. 2010;54(10):4178–4184. doi:10.1128/aac.01301-0920660683
  • Gaibani P, Re MC, Campoli C, et al. Bloodstream infection caused by KPC-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam: epidemiology and genomic characterization. Clin Microbiol Infect. 2020;26(4):516.e1–516.e4. doi:10.1016/j.cmi.2019.11.011
  • Wang L, Fang H, Feng J, et al. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae. Front Microbiol. 2015;6:838. doi:10.3389/fmicb.2015.0083826347725
  • Kong HK, Pan Q, Lo WU, et al. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Sci Rep. 2018;8(1):15248. doi:10.1038/s41598-018-33568-830323356
  • Peirano G, Pitout JDD. Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs. 2019;79(14):1529–1541. doi:10.1007/s40265-019-01180-331407238
  • Octavia S, Kalisvar M, Venkatachalam I, et al. Klebsiella pneumoniae and Klebsiella quasipneumoniae define the population structure of blaKPC-2 Klebsiella: a 5 year retrospective genomic study in Singapore. J Antimicrob Chemother. 2019;74(11):3205–3210. doi:10.1093/jac/dkz33231504571
  • Lee SG, Jeong SH, Lee H, et al. Spread of CTX-M-type extended-spectrum beta-lactamases among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae from a Korean hospital. Diagn Microbiol Infect Dis. 2009;63(1):76–80. doi:10.1016/j.diagmicrobio.2008.09.00219073302
  • Wang J, Zeng ZL, Huang XY, et al. Evolution and comparative genomics of F33: a-:B-plasmids carrying bla(CTX-M-55) or bla(CTX-M-65) in Escherichia coli and Klebsiella pneumoniae isolated from animals, food products, and humans in China. mSphere. 2018;3(4). doi:10.1128/mSphere.00137-18
  • Stolle I, Prenger-Berninghoff E, Stamm I, et al. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother. 2013;68(12):2802–2808. doi:10.1093/jac/dkt25923833179
  • Yang J, Ye L, Guo L, et al. A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin Microbiol Infect. 2013;19(11):E509–15. doi:10.1111/1469-0691.1227523841705
  • Chen L, Mathema B, Chavda KD, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–696. doi:10.1016/j.tim.2014.09.00325304194
  • Bi D, Jiang X, Sheng ZK, et al. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a ‘resistance-disarmed’ model organism. J Antimicrob Chemother. 2015;70(10):2770–2774. doi:10.1093/jac/dkv20426169555
  • Tang Y, Li G, Liang W, et al. Translocation of Carbapenemase Gene bla(KPC-2) both internal and external to transposons occurs via novel structures of Tn1721 and exhibits distinct movement patterns. Antimicrob Agents Chemother. 2017;61(10). doi:10.1128/aac.01151-17
  • Li G, Zhang Y, Bi D, et al. First report of a clinical, multidrug-resistant Enterobacteriaceae isolate coharboring fosfomycin resistance gene fosA3 and carbapenemase gene blaKPC-2 on the same transposon, Tn1721. Antimicrob Agents Chemother. 2015;59(1):338–343. doi:10.1128/aac.03061-1425367902