1,509
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Livestock-Associated and Non-Livestock-Associated Staphylococcus aureus Carriage in Humans is Associated with Pig Exposure in a Dose–Response Manner

, , , & ORCID Icon
Pages 173-184 | Published online: 19 Jan 2021

References

  • Davis MF, Pisanic N, Rhodes SM, et al. Occurrence of Staphylococcus aureus in swine and swine workplace environments on industrial and antibiotic-free hog operations in North Carolina, USA: a one health pilot study. Environ Res. 2018;163:88–96. doi:10.1016/j.envres.2017.12.01029428885
  • Jorgensen SCJ, Lagnf AM, Bhatia S, et al. Diagnostic stewardship: a clinical decision rule for blood cultures in community-onset methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections. Infect Dis Ther. 2019;8(2):229–242. doi:10.1007/s40121-019-0238-130783995
  • Tong SY, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi:10.1128/CMR.00134-1426016486
  • Chen CJ, Huang YC. New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect. 2014;20(7):605–623. doi:10.1111/1469-0691.1270524888414
  • Chuang YY, Huang YC. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: an emerging issue? Int J Antimicrob Agents. 2015;45(4):334–340. doi:10.1016/j.ijantimicag.2014.12.00725593014
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–18.30209034
  • Chanchaithong P, Perreten V, Am-In N, et al. Molecular characterization and antimicrobial resistance of livestock-associated methicillin-resistant Staphylococcus aureus isolates from pigs and swine workers in Central Thailand. Microb Drug Resist. 2019;25(9):1382–1389. doi:10.1089/mdr.2019.001131361580
  • Neyra RC, Frisancho JA, Rinsky JL, et al. Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA). Environ Health Perspect. 2014;122(5):471–477. doi:10.1289/ehp.130674124508836
  • Verkola M, Pietola E, Järvinen A, et al. Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. Zoonoses Public Health. 2019;66(6):667–678. doi:10.1111/zph.1261931232511
  • Feingold BJ, Silbergeld EK, Curriero FC, et al. Livestock density as risk factor for livestock-associated methicillin-resistant Staphylococcus aureus, the Netherlands. Emerg Infect Dis. 2012;18(11):1841–1849. doi:10.3201/eid1811.11185023092646
  • Kuehn B. MRSA may move from livestock to humans. JAMA. 2012;308(17):1726. doi:10.1001/jama.2012.1481423117756
  • Murra M, Mortensen KL, Wang M. Livestock-associated methicillin-resistant Staphylococcus aureus (clonal complex 398) causing bacteremia and epidural abscess. Int J Infect Dis. 2019;81:107–109. doi:10.1016/j.ijid.2019.01.01230641203
  • Sun L, Chen Y, Wang D, et al. Surgical site infections caused by highly virulent methicillin-resistant Staphylococcus aureus sequence type 398, China. Emerg Infect Dis. 2019;25(1):157–160. doi:10.3201/eid2501.17186230561317
  • van Alen S, Ballhausen B, Peters G, et al. In the centre of an epidemic: fifteen years of LA-MRSA CC398 at the University Hospital Münster. Vet Microbiol. 2017;200:19–24. doi:10.1016/j.vetmic.2016.01.02126878970
  • Chen CJ, Lauderdale TY, Lu CT, et al. Clinical and molecular features of MDR livestock-associated MRSA ST9 with staphylococcal cassette chromosome mecXII in humans. J Antimicrob Chemother. 2018;73(1):33–40. doi:10.1093/jac/dkx35729048488
  • McCarthy AJ, van Wamel W, Vandendriessche S, et al. Staphylococcus aureus CC398 clade associated with human-to-human transmission. Appl Environ Microbiol. 2012;78(24):8845–8848. doi:10.1128/AEM.02398-1223042163
  • McCarthy AJ, Witney AA, Gould KA, et al. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol Evol. 2011;3:1164–1174. doi:10.1093/gbe/evr09221920902
  • Ye X, Wang X, Fan Y, et al. Genotypic and phenotypic markers of livestock-associated methicillin-resistant Staphylococcus aureus CC9 in humans. Appl Environ Microbiol. 2016;82(13):3892–3899. doi:10.1128/AEM.00091-1627107114
  • Garcia-Alvarez L, Holden MT, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595–603. doi:10.1016/S1473-3099(11)70126-821641281
  • Zhang K, Sparling J, Chow BL, et al. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2004;42(11):4947–4955. doi:10.1128/JCM.42.11.4947-4955.200415528678
  • CLSI. Performance standards for antimicrobial susceptibility testing. Twenty-Fifth Informational Supplement (M100-S25): Clinical and Laboratory Standards Institute. CLSI; 2015
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Feil EJ, Li BC, Aanensen DM, et al. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186(5):1518–1530. doi:10.1128/JB.186.5.1518-1530.200414973027
  • van Wamel WJ, Rooijakkers SH, Ruyken M, et al. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188(4):1310–1315. doi:10.1128/JB.188.4.1310-1315.200616452413
  • Guo D, Liu Y, Han C, et al. Phenotypic and molecular characteristics of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from pigs: implication for livestock-association markers and vaccine strategies. Infect Drug Resist. 2018;11:1299–1307. doi:10.2147/IDR.S17362430197527
  • Ho PL, Chow KH, Lai EL, et al. Clonality and antimicrobial susceptibility of Staphylococcus aureus and methicillin-resistant S. aureus isolates from food animals and other animals. J Clin Microbiol. 2012;50(11):3735–3737. doi:10.1128/JCM.02053-1222895044
  • Price LB, Stegger M, Hasman H, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3(1):e00305–e00311. doi:10.1128/mBio.00305-1122354957
  • Ye X, Fan Y, Wang X, et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci Rep. 2016;6:19184. doi:10.1038/srep1918426755419
  • Hatcher SM, Rhodes SM, Stewart JR, et al. The prevalence of antibiotic-resistant Staphylococcus aureus nasal carriage among industrial Hog operation workers, community residents, and children living in their households: north Carolina, USA. Environ Health Perspect. 2017;125(4):560–569. doi:10.1289/EHP3528362266