578
Views
1
CrossRef citations to date
0
Altmetric
Review

Machine Learning and Artificial Intelligence for the Prediction of Host–Pathogen Interactions: A Viral Case

ORCID Icon
Pages 3319-3326 | Published online: 20 Aug 2021

References

  • ShortridgeK. Pandemic influenza: a zoonosis?Semin Respir Infect. 1992;7:11–25.1609163
  • HahnBH, ShawGM, DeKM, SharpPM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287(5453):607–614. doi:10.1126/science.287.5453.60710649986
  • PatzJA, GraczykTK, GellerN, VittorAY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30(12–13):1395–1405. doi:10.1016/S0020-7519(00)00141-711113264
  • PatzJA, ReisenWK. Immunology, climate change and vector-borne diseases. Trends Immunol. 2001;22(4):171–172. doi:10.1016/S1471-4906(01)01867-111274908
  • CasadevallA, PirofskiLA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000;68(12):6511–6518. doi:10.1128/IAI.68.12.6511-6518.200011083759
  • V’kovskiP, KratzelA, SteinerS, StalderH, ThielV. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020;19:155–170.33116300
  • YamauchiY, HeleniusA. Virus entry at a glance. J Cell Sci. 2013;126(6):1289–1295.23641066
  • LauSK, LeeP, TsangAK, et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011;85(21):11325–11337. doi:10.1128/JVI.05512-1121849456
  • GauntER, HardieA, ClaasEC, SimmondsP, TempletonKE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940–2947. doi:10.1128/JCM.00636-1020554810
  • GuruprasadL. Human coronavirus spike protein-host receptor recognition. Prog Biophys Mol Biol. 2020.
  • ZhengN, WangK, ZhanW, DengL. Targeting virus-host protein interactions: feature extraction and machine learning approaches. Curr Drug Metab. 2019;20(3):177–184. doi:10.2174/138920021966618082912103830156155
  • Cuesta-AstrozY, OliveiraG. Computational and experimental approaches to predict host–parasite protein–protein interactions. In: Computational Cell Biology. New York, NY: Humana Press; 2018:153–173.
  • Liu-WeiW, KafkasS, ChenJ, DimonacoNJ, TegnérJ, HoehndorfR. DeepViral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes. 2021.
  • MockF, ViehwegerA, BarthE, MarzM. VIDHOP, viral host prediction with Deep Learning. Bioinformatics. 2021;37(3):318–325. doi:10.1093/bioinformatics/btaa70532777818
  • FischDH, YakimovichA, CloughB, et al. An Artificial Intelligence Workflow for Defining Host-Pathogen Interactions. bioRxiv. 2018:408450.
  • MitchellTM. Machine learning. 1997.
  • TarcaAL, CareyVJ, ChenXW, RomeroR, DrăghiciS. Machine learning and its applications to biology. PLoS Comput Biol. 2007;3(6):e116. doi:10.1371/journal.pcbi.003011617604446
  • SommerC, GerlichDW. Machine learning in cell biology–teaching computers to recognize phenotypes. J Cell Sci. 2013;126(24):5529–5539.24259662
  • SommerC, StraehleC, KotheU, HamprechtFA. ilastik: interactive learning and segmentation toolkit. Paper presented at: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2011; IEEE.
  • LeCunY, BengioY, HintonG. Deep learning. nature. 2015;521(7553):436. doi:10.1038/nature1453926017442
  • BengioY, CourvilleA, VincentP. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–1828. doi:10.1109/TPAMI.2013.5023787338
  • LeCunY, BengioY. Convolutional networks for images, speech, and time series. In: ArbibMA, editor. The Handbook of Brain Theory and Neural Networks. MIT Press; 1995:3361.
  • HochreiterS, SchmidhuberJ. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. doi:10.1162/neco.1997.9.8.17359377276
  • VaswaniA, ShazeerN, ParmarN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998–6008.
  • FedusW, ZophB, ShazeerN. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. arXiv Preprint arXiv:210103961. 2021.
  • DevlinJ, ChangMW, LeeK, ToutanovaK. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint arXiv:181004805. 2018.
  • WeiningerD. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–36.
  • ZouJ, HussM, AbidA, MohammadiP, TorkamaniA, TelentiA. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12–18. doi:10.1038/s41588-018-0295-530478442
  • KarabulutOC, KarpuzcuBA, TürkE, IbrahimAH, SüzekBE. ML-AdVInfect: a machine-learning based adenoviral infection predictor. Front Mol Biosci. 2021;8. doi:10.3389/fmolb.2021.647424
  • HoTK. Random decision forests. Paper presented at: Proceedings of 3rd International Conference on Document Analysis and Recognition; 1995.
  • CrammerK, SingerY. On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res. 2001;2:265–292.
  • PoplinR, ChangP-C, AlexanderD, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983–987. doi:10.1038/nbt.423530247488
  • ChiuCY, MillerSA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341. doi:10.1038/s41576-019-0113-730918369
  • TampuuA, BzhalavaZ, DillnerJ, VicenteVR, MelcherU. ViraMiner: deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS One. 2019;14(9):e0222271. doi:10.1371/journal.pone.022227131509583
  • VeltriD, KamathU, ShehuA. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 2018;34(16):2740–2747. doi:10.1093/bioinformatics/bty17929590297
  • ZhangY, LinJ, ZhaoL, ZengX, LiuX. A novel antibacterial peptide recognition algorithm based on BERT. Brief Bioinform. 2021.
  • BeckBR, ShinB, ChoiY, ParkS, KangK. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784–790. doi:10.1016/j.csbj.2020.03.02532280433
  • GrayRD, AlbrechtD, BeerliC, et al. Nanoscale polarization of the entry fusion complex of vaccinia virus drives efficient fusion. Nat Microbiol. 2019;4(10):1636–1644. doi:10.1038/s41564-019-0488-431285583
  • WangI, BurckhardtCJ, YakimovichA, GreberUF. Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses. 2018;10(4):166. doi:10.3390/v10040166
  • GrayRD, BeerliC, PereiraPM, et al. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci Rep. 2016;6:29132. doi:10.1038/srep2913227374400
  • YakimovichA, HuttunenM, SamolejJ, et al. Mimicry embedding for advanced neural network training of 3D biomedical micrographs. bioRxiv. 2019:820076.
  • DalesS, SiminovitchL. The development of vaccinia virus in Earle’s L strain cells as examined by electron microscopy. J Biophys Biochem Cytol. 1961;10(4):475–503. doi:10.1083/jcb.10.4.47513719413
  • DalesS, EggersHJ, TammI, PaladeGE. Electron microscopic study of the formation of poliovirus. Virology. 1965;26:379–389. doi:10.1016/0042-6822(65)90001-214319710
  • NiiS, MorganC, RoseHM. Electron microscopy of herpes simplex virus: II. Sequence of development. J Virol. 1968;2(5):517–536. doi:10.1128/jvi.2.5.517-536.19684301317
  • WangI-H, BurckhardtCJ, YakimovichA, MorfMK, GreberUF. The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J Cell Sci. 2017;130(13):2185–2195.28515232
  • GeorgiF, KuttlerF, MurerL, et al. A high-content image-based drug screen of clinical compounds against cell transmission of adenovirus. Scientific Data. 2020;7(1):1–12. doi:10.1038/s41597-020-00604-031896794
  • FischD, YakimovichA, CloughB, et al. Defining host–pathogen interactions employing an artificial intelligence workflow. eLife. 2019;8:e40560. doi:10.7554/eLife.4056030744806
  • NanniL, De LucaE, FacinML, MaguoloG. Deep learning and handcrafted features for virus image classification. J Imag. 2020;6(12):143. doi:10.3390/jimaging6120143
  • MatuszewskiDJ, SintornI-M. Reducing the u-net size for practical scenarios: virus recognition in electron microscopy images. Comput Methods Programs Biomed. 2019;178:31–39. doi:10.1016/j.cmpb.2019.05.02631416558
  • ZhangL, YanWQ. Deep learning methods for virus identification from digital images. Paper presented at: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ); 2020.
  • AgolVI. Cytopathic effects: virus-modulated manifestations of innate immunity?Trends Microbiol. 2012;20(12):570–576. doi:10.1016/j.tim.2012.09.00323072900
  • MocarskiES, UptonJW, KaiserWJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol. 2012;12(2):79. doi:10.1038/nri3131
  • ShubinAV, DemidyukIV, KomissarovAA, RafievaLM, KostrovSV. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016;7(34):55863. doi:10.18632/oncotarget.1015027331412
  • SuchmanE, BlairCCytopathic effects of viruses protocols. 2007.
  • ShenY, ShenkTE. Viruses and apoptosis. Curr Opin Genet Dev. 1995;5(1):105–111. doi:10.1016/S0959-437X(95)90061-67749317
  • BeerliC, YakimovichA, KilcherS, et al. Vaccinia virus hijacks EGFR signalling to enhance virus spread through rapid and directed infected cell motility. Nat Microbiol. 2018;4:216–225.30420785
  • González-SánchezH, Monsiváis-UrendaA, Salazar-AldreteC, et al. Effects of cytomegalovirus infection in human neural precursor cells depend on their differentiation state. J Neurovirol. 2015;21(4):346–357. doi:10.1007/s13365-015-0315-525851778
  • RonnebergerO, FischerP, BroxTU-net: convolutional networks for biomedical image segmentation. Paper presented at: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2015; Cham.
  • ItoE, SatoT, SanoD, UtagawaE, KatoT. Virus particle detection by convolutional neural network in transmission electron microscopy images. Food Environ Virol. 2018;10(2):201–208. doi:10.1007/s12560-018-9335-729352405
  • AndriasyanV, YakimovichA, PetkidisA, et al. Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells. Iscience. 2021;24(6):102543. doi:10.1016/j.isci.2021.10254334151222
  • WangW, YanM, WuC. Multi-granularity hierarchical attention fusion networks for reading comprehension and question answering. arXiv Preprint arXiv:181111934. 2018.
  • ZhuY, KirosR, ZemelR, et al. Aligning books and movies: towards story-like visual explanations by watching movies and reading books. Paper presented at: Proceedings of the IEEE International Conference on Computer Vision; 2015.
  • GilliozA, CasasJ, MugelliniE, Abou KhaledO. Overview of the Transformer-based Models for NLP Tasks. Paper presented at: 2020 15th Conference on Computer Science and Information Systems (FedCSIS); 2020.
  • LeeJ, YoonW, KimS, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–1240.31501885
  • WangLL, LoK, ChandrasekharY, et al. CORD-19: the covid-19 open research dataset. ArXiv. 2020.
  • KöksalA, DönmezH, ÖzçelikR, OzkirimliE, ÖzgürA. Vapur: a search engine to find related protein–compound pairs in COVID-19 literature. arXiv Preprint arXiv:200902526. 2020.
  • WangX, SongX, LiB, GuanY, HanJ. Comprehensive named entity recognition on cord-19 with distant or weak supervision. arXiv Preprint arXiv:200312218. 2020.
  • GuoX, MirzaalianH, SabirE, JaiswalA, Abd-AlmageedW. Cord19sts: covid-19 semantic textual similarity dataset. arXiv Preprint arXiv:200702461. 2020.
  • TamLK, WangX, XuD. Transformer query-target knowledge discovery (TEND): drug discovery from CORD-19. arXiv Preprint arXiv:201204682. 2020.
  • ReddyRG, IyerB, SultanMA, et al. End-to-end QA on COVID-19: domain adaptation with synthetic training. arXiv Preprint arXiv:201201414. 2020.
  • MöllerT, ReinaA, JayakumarR, PietschM. COVID-QA: a question answering dataset for COVID-19. Paper presented at: Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020; 2020.
  • TangR, NogueiraR, ZhangE, et al. Rapidly bootstrapping a question answering dataset for COVID-19. arXiv Preprint arXiv:200411339. 2020.
  • LeeJ, YiSS, JeongM, et al. Answering questions on covid-19 in real-time. arXiv Preprint arXiv:200615830. 2020.
  • SenR, NayakL, DeRK. A review on host–pathogen interactions: classification and prediction. Eur J Clin Microbiol Infect Dis. 2016;35(10):1581–1599. doi:10.1007/s10096-016-2716-727470504
  • EllenbergJ, SwedlowJR, BarlowM, et al. A call for public archives for biological image data. Nat Methods. 2018;15(11):849–854. doi:10.1038/s41592-018-0195-830377375
  • YakimovichA, HuttunenM, SamolejJ, et al. Mimicry embedding facilitates advanced neural network training for image-based pathogen detection. Msphere. 2020;5(5):e00836–20. doi:10.1128/mSphere.00836-2032907956