1,312
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Early-Onset Neonatal Sepsis in Low- and Middle-Income Countries: Current Challenges and Future Opportunities

, , , , &
Pages 933-946 | Published online: 09 Mar 2022

References

  • Sands K, Carvalho MJ, Portal E, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol. 2021;6(4):512–523. doi:10.1038/s41564-021-00870-7
  • Chaurasia S, Sivanandan S, Agarwal R, Ellis S, Sharland M, Sankar MJ. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ. 2019;364. doi:10.1136/bmj.k5314
  • Thomson KM, Dyer C, Liu F, et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect Dis. 2021:1–12. doi:10.1016/s1473-3099(21)00050-5
  • Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Global Health. 2016;4(10):e752–e760. doi:10.1016/S2214-109X(16)30148-6
  • Fleischmann C, Reichert F, Cassini A, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Arch Dis Child. 2021:1–8. doi:10.1136/archdischild-2020-320217
  • Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respirat Med. 2018;6(3):223–230. doi:10.1016/S2213-2600(18)30063-8
  • Okomo U, Akpalu ENK, Le DK, et al. Articles Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019;3099(19):1–16. doi:10.1016/S1473-3099(19)30414-1
  • Korang SK, Safi S, Nava C, et al. Antibiotic regimens for early-onset neonatal sepsis. Cochrane Database Syst Rev. 2021;5:CD013836. doi:10.1002/14651858.CD013836.pub2
  • Popescu CR, Cavanagh MMM, Tembo B, et al. Neonatal sepsis in low-income countries: epidemiology, diagnosis and prevention. Expert Rev Anti Infect Ther. 2020:1. doi:10.1080/14787210.2020.1732818
  • Doenhardt M, Seipolt B, Mense L, et al. Neonatal and young infant sepsis by group B Streptococci and Escherichia coli: a single-center retrospective analysis in Germany—GBS screening implementation gaps and reduction in antibiotic resistance. Eur J Pediatr. 2020;179(11):1769–1777. doi:10.1007/s00431-020-03659-8
  • Stoll BJ, Puopolo KM, Hansen NI, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174(7):1–12. doi:10.1001/jamapediatrics.2020.0593
  • Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390(10104):1770–1780. doi:10.1016/S0140-6736(17)31002-4
  • Solomon S, Akeju O, Odumade OA, et al. Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS One. 2021;16:1–25. doi:10.1371/journal.pone.0255410
  • Dhir SK, Sundaram V, Gautam V, et al. Microorganisms profile and antimicrobial resistance pattern in outborn neonates in Northern India: a hospital-based observational study. J Trop Pediatr. 2021;67(3):1–9. doi:10.1093/tropej/fmab068
  • Mukhtar-Yola M, Iliyasu Z. A review of neonatal morbidity and mortality in Aminu Kano Teaching Hospital, Northern Nigeria. Trop Doctor. 2007;37:130–132.
  • Chan GJ, Lee AC, Baqui AH, Tan J, Black RE. Risk of early-onset neonatal infection with maternal infection or colonization: a global systematic review and meta-analysis. PLoS Med. 2013;10(8):e1001502. doi:10.1371/journal.pmed.1001502
  • Carl MA, Ndao IM, Springman AC, et al. Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Classic Infect Dis. 2014;58:1211–1218. doi:10.1093/cid/ciu084
  • Li W, Tapiainen T, Brinkac L, et al. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth. J Infect Dis. 2020:1–11. doi:10.1093/infdis/jiaa155
  • Wolf MF, Shqara RA, Naskovica K, et al. Vertical transmission of extended-spectrum, beta-lactamase-producing Enterobacteriaceae during preterm delivery: a prospective study. Microorganisms. 2021;9(3):1–14. doi:10.3390/microorganisms9030506
  • Simonsen KA, Anderson-Berry AL, Delair SF, Dele Davies H. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):21–47. doi:10.1128/CMR.00031-13
  • Gray JW. Surveillance of infection in neonatal intensive care units. Early Hum Dev. 2007;83(3):157–163. doi:10.1016/j.earlhumdev.2007.01.006
  • Labi AK, Obeng-Nkrumah N, Bjerrum S, Enweronu-Laryea C, Newman MJ. Neonatal bloodstream infections in a Ghanaian Tertiary Hospital: are the current antibiotic recommendations adequate? BMC Infect Dis. 2016;16(1). doi:10.1186/s12879-016-1913-4
  • Chan GJ, Baqui AH, Modak JK, et al. Early-onset neonatal sepsis in Dhaka, Bangladesh: risk associated with maternal bacterial colonisation and chorioamnionitis. Trop Med Int Health. 2013;18(9):1057–1064. doi:10.1111/tmi.12150
  • Mulinganya G, Balolebwami S, Zigabe S, et al. Evaluation of a turbidimetric C-reactive protein assay to monitor early-onset neonatal sepsis in South Kivu (Democratic Republic of the Congo). Clin Chem Lab Med. 2021;59(3):625–630. doi:10.1515/cclm-2020-0309
  • Oo NAT, Edwards JK, Pyakurel P, et al. Neonatal sepsis, antibiotic susceptibility pattern, and treatment outcomes among neonates treated in two tertiary care hospitals of Yangon, Myanmar from 2017 to 2019. Trop Med Infect Dis. 2021;6(2):62. doi:10.3390/tropicalmed6020062
  • Puopolo KM, Mukhopadhyay S, Hansen NI, et al. Identification of extremely premature infants at low risk for early-onset sepsis. Pediatrics. 2017;140(5). doi:10.1542/peds.2017-0925
  • Jatsho J, Nishizawa Y, Pelzom D, Sharma R. Clinical and bacteriological profile of neonatal sepsis: a prospective hospital-based study. Int J Paediatr. 2020;2020. doi:10.1155/2020/1835945
  • Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr. 2016;28(2):135–140. doi:10.1097/MOP.0000000000000315
  • McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res. 2020;88(1):14–26. doi:10.1038/s41390-020-0785-x
  • Fitchett EJA, Seale AC, Vergnano S, et al. Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research. Lancet Infect Dis. 2016;16(10):e202–e213. doi:10.1016/S1473-3099(16)30082-2
  • Seale AC, Mwaniki M, Newton CR, Berkley JA. Maternal and early onset neonatal bacterial sepsis: burden and strategies for prevention in sub-Saharan Africa. Lancet Infect Dis. 2009;9(7):428–438. doi:10.1016/S1473-3099(09)70172-0
  • Puopolo KM, Benitza WE, Zaoutis TE. RE: management of neonates born at >35 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2019;142(6). doi:10.1542/peds.2019-0533A
  • Weston EJ, Pondo T, Lewis MM, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008 USA. Pediatr Infect Dis J. 2011;30(11):937–941. doi:10.1097/INF.0b013e318223bad2
  • Puopolo KM, Benitza WE, Zaoutis TE. Management of neonates born at <34 6/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2018;142(6). doi:10.1542/peds.2019-0533A
  • Schrag SJ, Farley MM, Petit S, et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics. 2016;138(6). doi:10.1542/peds.2016-2013
  • Vatne A, Klingenberg C, Rettedal S, Øymar K. Early-onset sepsis in neonates - a population-based study in South-West Norway from 1996 to 2018. Front Pediatr. 2021;9:1–8. doi:10.3389/fped.2021.634798
  • Kopsidas I, Molocha NM, Kourkouni E, et al. Potential benefit from the implementation of the Kaiser Permanente neonatal early-onset sepsis calculator on clinical management of neonates with presumed sepsis. Eur J Pediatr. 2021. doi:10.1007/s00431-021-04282-x
  • Jiang S, Hong L, Gai J, et al. Early-onset sepsis among preterm neonates in China, 2015 to 2018. Pediatr Infect Dis J. 2020;38:1236–1241. doi:10.1097/INF.0000000000002492
  • Nathoo KJ, Mason PR, Chimbira TH. Neonatal septicaemia in Harare Hospital: aetiology and risk factors. The Puerperal Sepsis Study Group. Cent Afr J Med. 1990;36(6):150–156.
  • Ballot DE, Nana T, Sriruttan C, Cooper PA. Bacterial bloodstream infections in neonates in a developing country. ISRN Pediatr. 2012;2012:1–6. doi:10.5402/2012/508512
  • Akindolire AE, Tongo O, Dada-Adegbola H, Akinyinka O. Etiology of early onset septicemia among neonates at the university college hospital, Ibadan, Nigeria. J Infect Dev Ctries. 2016;10(12):1338–1344. doi:10.3855/jidc.7830
  • Khalil N, Blunt HB, Li Z, Hartman T. Neonatal early onset sepsis in Middle Eastern countries: a systematic review. Arch Dis Child. 2020;105(7):639–647. doi:10.1136/archdischild-2019-317110
  • Sankar MJ. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ. 2019;1(364):k5314. doi:10.1136/bmj.k5314
  • Sundaram V, Kumar P, Mukhopadhyay K. Blood culture confirmed bacterial sepsis in neonates in a North Indian tertiary care center: changes over the last decade. Jpn J Infect Dis. 2008;62:46–50.
  • Camargo JF, Caldas JP, Marba ST. Early neonatal sepsis: prevalence, complications and outcomes in newborns with 35 weeks of gestational age or more. Revista Paulista de Pediatria. 2021;40. doi:10.1590/1984-0462/2022/40/2020388
  • Freitas FT, Romero GA. Early-onset neonatal sepsis and the implementation of group B streptococcus prophylaxis in a Brazilian maternity hospital: a descriptive study. Braz J Infect Dis. 2017;21(1):92–97. doi:10.1016/j.bjid.2016.09.013
  • Achten NB, Juliana AE, Lissone NP, et al. Epidemiology and mortality of early-onset neonatal sepsis in Suriname: a 2-year surveillance study. J Pediatric Infect Dis Soc. 2021;10(4):514–516. doi:10.1093/jpids/piaa130
  • Li G, Bielicki JA, Ahmed ASMNU, et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network. Arch Dis Child. 2020;105(1):26–31. doi:10.1136/archdischild-2019-316816
  • Irene Del Mastro N, Tejada-Llacsa PJ, Reinders S, et al. Home birth preference, childbirth, and newborn care practices in rural Peruvian Amazon. PLoS One. 2021;16:1–18. doi:10.1371/journal.pone.0250702
  • Ganatra HA, Stoll BJ, Zaidi AKM. International perspective on early-onset neonatal sepsis. Clin Perinatol. 2010;37(2):501–523. doi:10.1016/j.clp.2010.02.004
  • Thaver D, Zaidi AK. Burden of neonatal infections in developing countries: a review of evidence from community-based studies. Pediatr Infect Dis J. 2009;28(1):S3–S9.
  • The Partnership for Maternal N and CH. Opportunities for Africa’s newborns: practical data, policy and programmatic support for newborn care in Africa: childbirth care. WHO on Behalf of The Partnership for Maternal Newborn and Child Health; 2007:63–78.
  • Crowe S, Utley M, Costello A, Pagel C. How many births in sub-Saharan Africa and South Asia will not be attended by a skilled birth attendant between 2011 and 2015? BMC Pregnancy Childbirth. 2012;12. doi:10.1186/1471-2393-12-4
  • Das JK, Rizvi A, Bhatti Z, et al. State of neonatal health care in eight countries of the SAARC region, South Asia: how can we make a difference? Paediatr Int Child Health. 2015;35(3):174–186. doi:10.1179/2046905515Y.0000000046
  • Seale AC, Blencowe H, Manu AA, et al. Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, south Asia, and Latin America for 2012: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(8):731–741. doi:10.1016/S1473-3099(14)70804-7
  • Ogundare E, Akintayo A, Aladekomo T, Adeyemi L, Ogunlesi T, Oyelami O. Presentation and outcomes of early and late onset neonatal sepsis in a Nigerian hospital. Afr Health Sci. 2019;19(3):2390–2399. doi:10.4314/ahs.v19i3.12
  • Mukherjee S, Mitra S, Basu S. Neonatal sepsis: the impact of carbapenem-resistant and hypervirulent Klebsiella pneumoniae. Front Med. 2021;8. doi:10.3389/fmed.2021.634349
  • Bulabula ANH, Dramowski A, Mehtar S. Transmission of multidrug-resistant Gram-negative bacteria from colonized mothers to their infants: a systematic review and meta-analysis. J Hosp Infect. 2020;104(1):57–67. doi:10.1016/j.jhin.2019.10.001
  • Medugu N, Iregbu K, Iroh Tam PY, Obaro S. Aetiology of neonatal sepsis in Nigeria, and relevance of group b streptococcus: a systematic review. PLoS One. 2018;1–16. doi:10.1371/journal.pone.0200350
  • Namli Kalem M, Köşüş A, Kamalak Z, Köşüş N, Kalem Z. Factors affecting the rates of caesarean sections in cases with premature rupture of membranes (PROM) at term. J Obstet Gynaecol. 2017;37(5):585–590. doi:10.1080/01443615.2016.1274291
  • Wisgrill L, Lepuschitz S, Blaschitz M, et al. Outbreak of yersiniabactin-producing Klebsiella pneumoniae in a neonatal intensive care unit. Pediatr Infect Dis J. 2019;36(6):638–642. doi:10.1097/INF.0000000000002258
  • Farzana R, Jones LS, Rahman A, Andrey DO. Outbreak of hypervirulent multidrug- resistant Klebsiella variicola causing high mortality in neonates in Bangladesh. Clin Infect Dis. 2019;68:1225–1227. doi:10.1093/cid/ciy778
  • Frenk S, Rakovitsky N, Temkin E, et al. Investigation of outbreaks of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in three neonatal intensive care units using whole genome sequencing. Antibiotics. 2020;9(10):1–10. doi:10.3390/antibiotics9100705
  • Rohit A, Suresh Kumar D, Dhinakaran I, et al. Whole-genome-based analysis reveals multiclone Serratia marcescens outbreaks in a non-neonatal intensive care unit setting in a tertiary care hospital in India. J Med Microbiol. 2019;68(4):616–621. doi:10.1099/jmm.0.000947
  • Yu J, Tan K, Rong Z, et al. Nosocomial outbreak of KPC-2- and NDM-1-producing Klebsiella pneumoniae in a neonatal ward: a retrospective study. BMC Infect Dis. 2016;16(563):1–6. doi:10.1186/s12879-016-1870-y
  • Khajuria A, Praharaj AK, Kumar M, Grover N, Aggarwal A. Multidrug resistant NDM-1 metallo-beta-lactamase producing Klebsiella pneumoniae sepsis outbreak in a neonatal intensive care unit in a tertiary care center at central India. Indian J Pathol Microbiol. 2014;57:65–68. doi:10.4103/0377-4929.130900
  • Hamer DH, Darmstadt GL, Carlin JB, Zaidi AKM, Bs MB. Etiology of Bacteremia in young infants in six countries. Pediatr Infect Dis J. 2015;34(1):1–8. doi:10.1097/INF.0000000000000549
  • Mugalu J, Nakakeeto MK, Kiguli S, Kaddu-Mulindwa DH. Aetiology, risk factors and immediate outcome of bacteriologically confirmed neonatal septicaemia in Mulago Hospital, Uganda. Afr Health Sci. 2006;6:120. doi:10.5555/afhs.2006.6.2.120
  • Kiwanuka J, Bazira J, Mwanga J, et al. The microbial spectrum of neonatal sepsis in Uganda: recovery of culturable bacteria in mother-infant pairs. PLoS One. 2013;8(8):e72775. doi:10.1371/journal.pone.0072775
  • Kohli-Kochhar R, Omuse G, Revathi G. A ten-year review of neonatal bloodstream infections in a Tertiary Private hospital in Kenya. J Infect Dev Ctries. 2011;5(11):799–803. doi:10.3855/jidc.1674
  • Shehab El-Din EMR, El-Sokkary MMA, Bassiouny MR, Hassan R. Epidemiology of neonatal sepsis and implicated pathogens: a Study from Egypt. Biomed Res Int. 2015;2015:1–11. doi:10.1155/2015/509484
  • van Staaden H, Hendricks C, Spicer K. Bacteraemia and antibiotic sensitivity in a tertiary neonatal intensive care unit. South Afr J Infect Dis. 2021;36(1):1–7. doi:10.4102/sajid.v36i1.195
  • Zea-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr. 2015;61(1):1–13. doi:10.1093/tropej/fmu079
  • Pillay D, Naidoo L, Swe Swe-Han K, Mahabeer Y. Neonatal sepsis in a tertiary unit in South Africa. BMC Infect Dis. 2021;21(1). doi:10.1186/s12879-021-05869-3
  • Velaphi SC, Westercamp M, Moleleki M, et al. Surveillance for incidence and etiology of early-onset neonatal sepsis in Soweto, South Africa. PLoS One. 2019;14(4):1–18. doi:10.1371/journal.pone.0214077
  • Dagnew AF, Cunnington MC, Dube Q, et al. Variation in reported neonatal group B streptococcal disease incidence in developing countries. Clin Infect Dis. 2012;55(1):91–102. doi:10.1093/cid/cis395
  • Bunduki GK, Adu-Sarkodie Y. Clinical outcome and isolated pathogens among neonates with sepsis in Democratic Republic of the Congo: a cross-sectional study. BMC Res Notes. 2019;12(1). doi:10.1186/s13104-019-4346-5
  • Mulinganya GM, Claeys M, Balolebwami SZ, et al. Etiology of early-onset neonatal sepsis and antibiotic resistance in Bukavu, Democratic Republic of the Congo. Clin Infect Dis. 2021;73(4):E976–E980. doi:10.1093/cid/ciab114
  • Asghar S, Khan JA, Mahmood MS, Arshad MI. A cross-sectional study of group B streptococcus -associated sepsis, coinfections, and antibiotic susceptibility profile in neonates in Pakistan. Adv Neonatal Care. 2020;20(4):E59–E69. doi:10.1097/ANC.0000000000000701
  • Alam MM, Saleem AF, Shaikh AS, Munir O, Qadir M. Neonatal sepsis following prolonged rupture of membranes in a tertiary care hospital in Karachi, Pakistan. J Infect Dev Ctries. 2014;8(1):67–73. doi:10.3855/jidc.3136
  • Johnson J, Robinson ML, Rajput UC, et al. High burden of bloodstream infections associated with antimicrobial resistance and mortality in the neonatal intensive care unit in Pune, India. Clin Infect Dis. 2021;73(2):271–280. doi:10.1093/cid/ciaa554
  • Sengupta M, Banerjee S, Das NK, Guchhait P, Misra S. Early onset neonatal septicaemia caused by Pantoea agglomerans. J Clin Diagn Res. 2016;10(5):DD01–DD02. doi:10.7860/JCDR/2016/19613.7807
  • Saha SK, Schrag SJ, El Arifeen S, et al. Causes and incidence of community-acquired serious infections among young children in south Asia (ANISA): an observational cohort study. Lancet. 2018;392(10142):145–159. doi:10.1016/S0140-6736(18)31127-9
  • Miura E, Martin MC. Group B streptococcal neonatal infections in Rio Grande do Sul, Brazil. Revista do Instituto de Medicina Tropical de São Paulo. 2001;43:243–246. doi:10.1590/S0036-46652001000500001
  • WHO Antimicrobial Resistance Division. Antimicrobial resistance global report on surveillance; 2014. doi:10.1016/j.giec.2020.06.004
  • Walsh TR. A one-health approach to antimicrobial resistance. Nat Microbiol. 2018;3(8):854–855. doi:10.1038/s41564-018-0208-5
  • O’Neill J. Infection prevention, control and surveillance: limiting the development and spread of drug resistance. Review on Antimicrobial Resistance; 2016.
  • Tumuhamye J, Sommerfelt H, Bwanga F, et al. Neonatal sepsis at Mulago national referral hospital in Uganda: etiology, antimicrobial resistance, associated factors and case fatality risk. PLoS One. 2020;15(8):e0237085. doi:10.1371/journal.pone.0237085
  • Kagia N, Kosgei P, Ooko M, et al. Carriage and acquisition of extended-spectrum β-lactamase-producing Enterobacterales among neonates admitted to hospital in Kilifi, Kenya. Clin Infect Dis. 2019;69(5):751–759. doi:10.1093/cid/ciy976
  • Datta S, Roy S, Chatterjee S, et al. A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS One. 2014;9(11):e112101. doi:10.1371/journal.pone.0112101
  • Mukherjee S, Naha S, Bhadury P, et al. Emergence of OXA-232-producing hypervirulent Klebsiella pneumoniae ST23 causing neonatal sepsis. J Antimicrobl Chemother. 2020;75(7):2004–2006. doi:10.1093/jac/dkaa080
  • Naha S, Sands K, Mukherjee S, et al. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. Int J Antimicrob Agents. 2020;55:3. doi:10.1016/j.ijantimicag.2020.105903
  • Naha S, Sands K, Mukherjee S, Saha B, Dutta S, Basu S. OXA-181-like carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from septicemic neonates: coexistence with NDM-5, resistome, transmissibility, and genome diversity. mSphere. 2021;6(1). doi:10.1128/msphere.01156-20
  • Mukherjee S, Bhattacharjee A, Naha S, et al. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infect Genet Evol. 2019;69:166–175. doi:10.1016/j.meegid.2019.01.024
  • Mitra S, Mukherjee S, Naha S, Chattopadhyay P, Dutta S, Basu S. Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and bla NDM gene in Enterobacteriaceae causing neonatal septicaemia. Antimicrob Resist Infect Control. 2019;8(1). doi:10.1186/s13756-019-0477-7
  • Brinkac LM, White R, Souza RD, et al. Emergence of New Delhi Metallo-Lactamase (NDM-5) in Klebsiella quasipneumoniae from neonates in a Nigerian hospital. msphere. 2019;4:685–703. doi:10.1128/mSphere
  • Arêde P, Ministro J, Oliveira DC. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the mecimediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA expression. Antimicrob Agents Chemother. 2013;57(7):3037–3045. doi:10.1128/AAC.02621-12
  • Ballot DE, Bandini R, Nana T, et al. A review of -multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 2019;19(1):1–9. doi:10.1186/s12887-019-1709-y
  • Sharma D, Kumar C, Pandita A, Pratap OT, Dasi T, Murki S. Bacteriological profile and clinical predictors of ESBL neonatal sepsis. J Matern Fetal Neonatal Med. 2016;29(4):567–570. doi:10.3109/14767058.2015.1011118
  • Muley VA, Ghadage DP, Bhore AV. Bacteriological profile of neonatal septicemia in a tertiary care hospital from Western India. J Glob Infect Dis. 2015;7(2):75–77. doi:10.4103/0974-777X.154444
  • Ullah O, Khan A, Ambreen A, et al. Antibiotic sensitivity pattern of bacterial isolates of neonatal septicemia in Peshawar, Pakistan. Arch Iran Med. 2016;19(12):866–869.
  • Chaudhary BR, Malla KK, Poudel S, Jha BK. Study of antibiotic susceptibility among bacterial isolates in neonatal intensive care unit of a tertiary care hospital: a descriptive cross-sectional study. J Nepal Med Assoc. 2020;58(231):893–899. doi:10.31729/jnma.5216
  • Viswanathan R, Singh AK, Basu S, Chatterjee S, Sardar S, Isaacs D. Multi-drug resistant gram negative bacilli causing early neonatal sepsis in India. Arch Dis Child Fetal Neonatal Ed. 2012;97(3):F182–F187. doi:10.1136/archdischild-2011-300097
  • Iroh Tam PY, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res. 2017;82(4):574–583. doi:10.1038/pr.2017.134
  • Masino AJ, Harris MC, Forsyth D, et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS One. 2019;14(2):e0212665. doi:10.1371/journal.pone.0212665
  • Yismaw AE, Abebil TY, Biweta MA, Araya BM. Proportion of neonatal sepsis and determinant factors among neonates admitted in University of Gondar comprehensive specialized hospital neonatal Intensive care unit Northwest Ethiopia 2017. BMC Res Notes. 2019;12(1). doi:10.1186/s13104-019-4587-3
  • Oeser C, Pond M, Butcher P, et al. PCR for the detection of pathogens in neonatal early onset sepsis. PLoS One. 2020;15(1):e0226817. doi:10.1371/journal.pone.0226817
  • Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr. 1996;129(2):275–278. doi:10.1016/S0022-3476(96)70254-8
  • Cantey JB, Baird SD. Ending the culture of culture-negative sepsis in the neonatal ICU; 2017. Available from: http://publications.aap.org/pediatrics/article-pdf/140/4/e20170044/1097363/peds_20170044.pdf. Accessed February 17, 2022.
  • Procianoy RS, Silveira RC. The challenges of neonatal sepsis management. J Pediatr. 2020;96:80–86. doi:10.1016/j.jped.2019.10.004
  • Hisamuddin E, Hisam A, Wahid S, Raza G. Validity of c-reactive protein (CRP) for diagnosis of neonatal sepsis. Pak J Med Sci. 2015;31(3):527–531. doi:10.12669/pjms.313.6668
  • Hedegaard SS, Wisborg K, Hvas AM. Diagnostic utility of biomarkers for neonatal sepsis - a systematic review. Infect Dis. 2015;47(3):117–124. doi:10.3109/00365548.2014.971053
  • Gilfillan M, Bhandari V. Neonatal sepsis biomarkers: where are we now? Res Rep Neonatol. 2019;9:9–20. doi:10.2147/rrn.s163082
  • El-Sonbaty MM, AlSharany W, Youness ER, Mohamed NA, Abdel-Hamid TA, Abdel-Razek ARA. Diagnostic utility of biomarkers in diagnosis of early stages of neonatal sepsis in neonatal intensive care unit in Egypt. Egypt Paediatr Assoc Gazette. 2016;64(2):91–96. doi:10.1016/j.epag.2016.01.002
  • Ranjeva SL, Warf BC, Schiff SJ. Economic burden of neonatal sepsis in sub-Saharan Africa. BMJ Global Health. 2018;3(1):e000347. doi:10.1136/bmjgh-2017-000347
  • Grant CH, Arnott A, Brook T, et al. Reducing antibiotic exposure in suspected neonatal sepsis. Clin Pediatr. 2018;57(1):76–81. doi:10.1177/0009922816689673
  • Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–722. doi:10.1038/nm.4142
  • Kuzniewicz MW, Puopolo KM, Fischer A, et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017;171(4):365. doi:10.1001/jamapediatrics.2016.4678
  • Fuchs A, Bielicki J, Mathur S, Sharland M, van den Anker JN. Reviewing the WHO guidelines for antibiotic use for sepsis in neonates and children. Paediatr Int Child Health. 2018;38(sup1):S3–S15. doi:10.1080/20469047.2017.1408738
  • Darlow CA, da Costa RMA, Ellis S, et al. Potential antibiotics for the treatment of neonatal sepsis caused by multidrug-resistant bacteria. Paediatr Drugs. 2021;23(5):465–484. doi:10.1007/s40272-021-00465-z
  • Obiero CW, Seale AC, Berkley JA. Empiric treatment of neonatal sepsis in developing countries. Pediatr Infect Dis J. 2015;34(6):659–661. doi:10.1097/INF.0000000000000692
  • Liem TBY, Slob EMA, Termote JUM, Wolfs TFW, Egberts ACG, Rademaker CMA. Comparison of antibiotic dosing recommendations for neonatal sepsis from established reference sources. Int J Clin Pharm. 2018;40(2):436–443. doi:10.1007/s11096-018-0589-9
  • Darmstadt GL, Miller-Bell M, Batra M, Law P, Law K. Extended-interval dosing of gentamicin for treatment of neonatal sepsis in developed and developing countries. J Health Popul Nutr. 2008;26(2):163–182.
  • Abdel-Hady E, El Hamamsy M, Hedaya M, Awad H. The efficacy and toxicity of two dosing-regimens of amikacin in neonates with sepsis. J Clin Pharm Ther. 2011;36(1):45–52. doi:10.1111/j.1365-2710.2009.01152.x
  • Rao SC, Srinivasjois R, Moon K. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2016;2016(12). doi:10.1002/14651858.CD005091.pub4
  • Hossain MM, Chowdhury NA, Shirin M, et al. Simplified dosing of gentamicin for treatment of sepsis in Bangladeshi neonates. J Health Popul Nutr. 2009;27(5):640–645. doi:10.3329/jhpn.v27i5.3640
  • Williams PCM. Potential of fosfomycin in treating multidrug-resistant infections in children. J Paediatr Child Health. 2020;56(6):864–872. doi:10.1111/jpc.14883
  • Darlow CA, Docobo-Perez F, Farrington N, et al. Amikacin combined with fosfomycin for treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. Antimicrob Agents Chemother. 2021;65:7. doi:10.1128/AAC.00293-21
  • Qi H, Wu YE, Liu YL, et al. Latamoxef for neonates with early-onset neonatal sepsis: a study protocol for a randomized controlled trial. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.635517