400
Views
11
CrossRef citations to date
0
Altmetric
Original Research

The Escherichia coli Sequence Type 131 Harboring Extended-Spectrum Beta-Lactamases and Carbapenemases Genes from Poultry Birds

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 805-813 | Published online: 02 Mar 2021

References

  • Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 2017;24(suppl_1):S44–s51. doi:10.1093/jtm/taw10228521000
  • Saeed M, Rasool MH, Rasheed F, et al. Extended-spectrum beta-lactamases producing extensively drug-resistant Salmonella Typhi in Punjab, Pakistan. J Infect Dev Ctries. 2020;14(2):169–176. doi:10.3855/jidc.1204932146451
  • Rasheed F, Saeed M, Alikhan NF, et al. Emergence of Resistance to Fluoroquinolones and Third-Generation Cephalosporins in Salmonella Typhi in Lahore, Pakistan. Microorganisms. 2020;8:9. doi:10.3390/microorganisms8091336
  • Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect. 2008;14(Suppl 1):117–123. doi:10.1111/j.1469-0691.2007.01851.x18154535
  • Hawkey PM. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect. 2008;14(Suppl 1):159–165. doi:10.1111/j.1469-0691.2007.01855.x18154540
  • Nguyen VT, Jamrozy D, Matamoros S, et al. Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother. 2019;74(3):561–570. doi:10.1093/jac/dky50630629197
  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658.30349322
  • Ojer-Usoz E, González D, Vitas AI, et al. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain. Meat Sci. 2013;93(2):316–321. doi:10.1016/j.meatsci.2012.09.00923062714
  • Seiffert SN, Hilty M, Perreten V, Endimiani A. Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat. 2013;16(1–2):22–45.23395305
  • Saliu EM, Vahjen W, Zentek J. Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev. 2017;18(1):46–57. doi:10.1017/S146625231700002028641596
  • Reich F, Atanassova V, Klein G. Extended-spectrum β-lactamase- and AmpC-producing enterobacteria in healthy broiler chickens, Germany. Emerg Infect Dis. 2013;19(8):1253–1259. doi:10.3201/eid1908.12087923876576
  • Huijbers PM, Graat EA, Haenen AP, et al. Extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. J Antimicrob Chemother. 2014;69(10):2669–2675. doi:10.1093/jac/dku17824879667
  • Tansawai U, Walsh TR, Niumsup PR. Extended spectrum ß-lactamase-producing Escherichia coli among backyard poultry farms, farmers, and environments in Thailand. Poult Sci. 2019;98(6):2622–2631. doi:10.3382/ps/pez00930690545
  • Li S, Zhao M, Liu J, Zhou Y, Miao Z. Prevalence and antibiotic resistance profiles of extended-spectrum β-lactamase-producing escherichia coli isolated from healthy broilers in Shandong Province, China. J Food Prot. 2016;79(7):1169–1173. doi:10.4315/0362-028X.JFP-16-02527357036
  • Ueda S, Ngan BT, Huong BT, Hirai I, Tuyen le D, Yamamoto Y. Limited transmission of bla(CTX-M-9)-type-positive Escherichia coli between humans and poultry in Vietnam. Antimicrob Agents Chemother. 2015;59(6):3574–3577. doi:10.1128/AAC.00517-1525779573
  • Kameyama M, Chuma T, Yabata J, Tominaga K, Iwata H, Okamoto K. Prevalence and epidemiological relationship of CMY-2 AmpC β-lactamase and CTX-M extended-spectrum β-lactamase-producing Escherichia coli isolates from broiler farms in Japan. J Vet Med Sci. 2013;75(8):1009–1015. doi:10.1292/jvms.12-045323503164
  • Ma J, Liu JH, Lv L, et al. Characterization of extended-spectrum β-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Appl Environ Microbiol. 2012;78(10):3668–3673. doi:10.1128/AEM.07507-1122407683
  • Poirel L, Stephan R, Perreten V, Nordmann P. The carbapenemase threat in the animal world: the wrong culprit. J Antimicrob Chemother. 2014;69(7):2007–2008. doi:10.1093/jac/dku05424576948
  • Köck R, Daniels-Haardt I, Becker K, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24(12):1241–1250. doi:10.1016/j.cmi.2018.04.00429654871
  • Umair M, Mohsin M, Ali Q, et al. Prevalence and genetic relatedness of extended spectrum-β-lactamase-producing escherichia coli among humans, cattle, and Poultry in Pakistan. Microb Drug Resist. 2019;25(9):1374–1381. doi:10.1089/mdr.2018.045031268408
  • Ahmad K, Khattak F, Ali A, et al. Carbapenemases and extended-spectrum β-lactamase–producing multidrug-resistant escherichia coli isolated from retail chicken in Peshawar: first report from Pakistan. J Food Prot. 2018;81(8):1339–1345. doi:10.4315/0362-028X.JFP-18-04530019956
  • Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F. Modified Hodge test: a simple and effective test for detection of carbapenemase production. Iran J Microbiol. 2011;3(4):189–193.22530087
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
  • Wirth T, Falush D, Lan R, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136–1151. doi:10.1111/j.1365-2958.2006.05172.x16689791
  • Baloch Z, Aslam B, Muzammil S, Khurshid M, Rasool MH, Ma K. Selection inversion: a probable tool against antibiotic resistance. Infect Drug Resist. 2018;11:1903–1905.30425539
  • Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M. Emergence of ISAba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. Future Microbiol. 2017;12:1261–1269. doi:10.2217/fmb-2017-008028980827
  • Aslam B, Chaudhry TH, Arshad MI, et al. The First bla(KPC) Harboring Klebsiella pneumoniae ST258 Strain Isolated in Pakistan. Microb Drug Resist. 2020;26(7):783–786. doi:10.1089/mdr.2019.042032109182
  • Liebana E, Carattoli A, Coque TM, et al. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis. 2013;56(7):1030–1037. doi:10.1093/cid/cis104323243183
  • Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis. 2015;60(3):439–452. doi:10.1093/cid/ciu78525301206
  • Brower CH, Mandal S, Hayer S, et al. The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia Coli in poultry chickens and variation according to farming practices in Punjab, India. Environ Health Perspect. 2017;125(7):077015. doi:10.1289/EHP29228749780
  • Hasan B, Sandegren L, Melhus A, et al. Antimicrobial drug-resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg Infect Dis. 2012;18(12):2055–2058. doi:10.3201/eid1812.12051323171693
  • Girlich D, Poirel L, Carattoli A, et al. Extended-spectrum beta-lactamase CTX-M-1 in Escherichia coli isolates from healthy poultry in France. Appl Environ Microbiol. 2007;73(14):4681–4685. doi:10.1128/AEM.02491-0617513592
  • Sarba EJ, Kelbesa KA, Bayu MD, Gebremedhin EZ, Borena BM, Teshale A. Identification and antimicrobial susceptibility profile of Escherichia coli isolated from backyard chicken in and around ambo, Central Ethiopia. BMC Vet Res. 2019;15(1):85. doi:10.1186/s12917-019-1830-z30866928
  • Salehi TZ, Bonab SF. Antibiotics susceptibility pattern of Escherichia coli strains isolated from chickens with colisepticemia in Tabriz province, Iran. Int J Poultry Sci. 2006;5(7):677–684. doi:10.3923/ijps.2006.677.684
  • Tang B, Chang J, Cao L, et al. Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China. BMC Microbiol. 2019;19(1):82. doi:10.1186/s12866-019-1454-231023222
  • Elmanama AA, Al-Reefi MR, Shamali MA, Hemaid HI. Carbapenem-resistant Gram-negative bacteria isolated from poultry samples: a cross-sectional study. The Lancet. 2019;393:S21. doi:10.1016/S0140-6736(19)30607-5
  • Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–591. doi:10.1128/CMR.00116-1425926236
  • Platell JL, Johnson JR, Cobbold RN, Trott DJ. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet Microbiol. 2011;153(1–2):99–108. doi:10.1016/j.vetmic.2011.05.00721658865
  • Giufrè M, Graziani C, Accogli M, Luzzi I, Busani L, Cerquetti M. Escherichia coli of human and avian origin: detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J Antimicrob Chemother. 2012;67(4):860–867. doi:10.1093/jac/dkr56522267238
  • Schink AK, Kadlec K, Kaspar H, Mankertz J, Schwarz S. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother. 2013;68(8):1741–1749. doi:10.1093/jac/dkt12323599361
  • Mora A, Herrera A, Mamani R, et al. Recent emergence of clonal group O25b: K1:H4-B2-ST131ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol. 2010;76(21):6991–6997. doi:10.1128/AEM.01112-1020817805
  • Wu G, Day MJ, Mafura MTet al. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One. 2013;8(9):e75392.24086522
  • Randall LP, Clouting C, Horton RAet al. Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother. 2011;66(1):86–95. doi:10.1093/jac/dkq39621098542
  • Dahmen S, Métayer V, Gay E, Madec JY, Haenni M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol. 2013;162(2–4):793–799. doi:10.1016/j.vetmic.2012.10.01523127568
  • Hordijk J, Wagenaar JA, van de Giessen A, et al. Increasing prevalence and diversity of ESBL/AmpC-type β-lactamase genes in Escherichia coli isolated from veal calves from 1997 to 2010. J Antimicrob Chemother. 2013;68(9):1970–1973. doi:10.1093/jac/dkt13223657803
  • Zhao X, Liu Z, Zhang Y, Yuan X, Hu M, Liu Y. Prevalence and molecular characteristics of avian-origin mcr-1-Harboring Escherichia coli in Shandong Province, China. Front Microbiol. 2020;11:255. doi:10.3389/fmicb.2020.0025532153539
  • Lv J, Mohsin M, Lei S, et al. Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan. Virulence. 2018;9(1):994–999. doi:10.1080/21505594.2018.146206029667494
  • Fang H, Lundberg C, Olsson-Liljequist B, et al. Molecular epidemiological analysis of Escherichia coli isolates producing extended-spectrum β-lactamases for identification of nosocomial outbreaks in Stockholm, Sweden. J Clin Microbiol. 2004;42(12):5917–5920. doi:10.1128/JCM.42.12.5917-5920.200415583340
  • Monstein Ö, Nilsson M, Nilsson M, Dornbusch K, Nilsson L. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX‐M genes in Enterobacteriaceae. APMIS. 2007;115(12):1400–1408. doi:10.1111/j.1600-0463.2007.00722.x18184411
  • Boyd DA, Tyler S, Christianson S, et al. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother. 2004;48(10):3758–3764. doi:10.1128/AAC.48.10.3758-3764.200415388431
  • Woodford N, Ellington MJ, Coelho JM, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–353. doi:10.1016/j.ijantimicag.2006.01.00416564159
  • Fallah F, Noori M, Hashemi A, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran. Scientifica. 2014;2014:245162. doi:10.1155/2014/24516225133013