127
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Molecular and Functional Characterization of a Novel Plasmid-Borne blaNDM-Like Gene, blaAFM-1, in a Clinical Strain of Aeromonas hydrophila

, , , , , , , , , , , , , , & show all
Pages 1613-1622 | Published online: 22 Apr 2021

References

  • Abdelhamed H, Banes M, Karsi A, et al. Recombinant ATPase of virulent Aeromonas hydrophila protects channel catfish against motile Aeromonas septicemia. Front Immunol. 2019;10:1–7. doi:10.3389/fimmu.2019.0164130723466
  • Xu YG, Chai LH, Shi W, et al. Transcriptome profiling and digital gene expression analysis of the skin of Dybowski’s frog (Rana dybowskii) exposed to Aeromonas hydrophila. Appl Microbiol Biotechnol. 2017;101:5799–5808. doi:10.1007/s00253-017-8385-328647779
  • Liu JQ, Xie LF, Zhao D, et al. A fatal diarrhoea outbreak in farm-raised Deinagkistrodon acutus in China is newly linked to potentially zoonotic Aeromonas hydrophila. Transbound Emerg Dis. 2019;66:287–298. doi:10.1111/tbed.1302030222905
  • Grim CJ, Kozlova EV, Sha J, et al. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. Mbio. 2013;4(2):1–13. doi:10.1128/mBio.00064-13
  • Sedlacek I, Krejci E, Andelova A, et al. Aeromonas hydrophila subsp. dhakensis--a causative agent of gastroenteritis imported into the Czech Republic. Ann Agric Environ Med. 2012;19:409–413.23020031
  • de la Morena ML, Van R, Singh K, et al. Diarrhea associated with Aeromonas species in children in day care centers. J Infect Dis. 1993;168:215–218. doi:10.1093/infdis/168.1.2158515113
  • Chern CH, How CK, Huang LJ. Images in emergency medicine. Necrotizing fasciitis caused by Aeromonas hydrophila. Ann Emerg Med. 2006;48(2):216–225. doi:10.1016/j.annemergmed.2005.12.02716857472
  • Riley PA, Parasakthi N, Liam CK. Development of Aeromonas hydrophila bacteremia in a patient recovering from cholera. Clin Infect Dis. 1996;22:867–868. doi:10.1093/clinids/22.5.8678722957
  • Kali A, Kalaivani R, Charles P, et al. Aeromonas hydrophila meningitis and fulminant sepsis in preterm newborn: a case report and review of literature. Indian J Med Microbiol. 2016;34:544–547. doi:10.4103/0255-0857.19538327934841
  • Fang JS, Chen JB, Chen WJ, et al. Haemolytic-uraemic syndrome in an adult male with Aeromonas hydrophila enterocolitis. Nephrol Dial Transplant. 1999;14:439–440. doi:10.1093/ndt/14.2.43910069207
  • Hughes HY, Conlan SP, Lau AF, et al. Detection and whole-genome sequencing of carbapenemase-producing Aeromonas hydrophila isolates from routine perirectal surveillance culture. J Clin Microbiol. 2016;54(4):1167–1170. doi:10.1128/JCM.03229-1526888898
  • Sekizuka T, Inamine Y, Segawa T, et al. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. Environ Microbiol Rep. 2019;11(4):589–597. doi:10.1111/1758-2229.1277231106978
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–1098.24252483
  • Buckner M, Ciusa ML, Piddock L. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. Fems Microbiol Rev. 2018;42(6):781–804. doi:10.1093/femsre/fuy03130085063
  • Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Ch. 2004;48(7):2347–2349. doi:10.1128/AAC.48.7.2347-2349.2004
  • Jiang XW, Cheng H, Huo YY, et al. Biochemical and genetic characterization of a novel metallo-beta-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594. Sci Rep. 2018;8:1–9. doi:10.1038/s41598-017-17765-529311619
  • Sun Z, Hu L, Sankaran B, et al. Differential active site requirements for NDM-1 beta-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat Commun. 2018;9:1–14. doi:10.1038/s41467-018-06839-129317637
  • Soriani FM, Kress MR, Fagundes DGP, et al. Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and msrB). Fungal Genet Biol. 2009;46:410–417. doi:10.1016/j.fgb.2009.01.00419373970
  • Tohya M, Tada T, Watanabe S, et al. Emergence of carbapenem-resistant Pseudomonas asiatica producing NDM-1 and VIM-2 metallo-beta-Lactamases in Myanmar. Antimicrob Agents Ch. 2019;63(8):1–8. doi:10.1128/AAC.00475-19
  • Berglund F, Marathe NP, Osterlund T, et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome. 2017;5(1):1–12. doi:10.1186/s40168-017-0353-828086968
  • Pollini S, Maradei S, Pecile P, et al. FIM-1, a new acquired metallo-beta-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Ch. 2013;57(1):410–416. doi:10.1128/AAC.01953-12
  • Yong D, Toleman MA, Bell J, et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-beta-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Ch. 2012;56(12):6154–6159. doi:10.1128/AAC.05654-11
  • Ebmeyer S, Kristiansson E, Larsson D. CMY-1/MOX-family AmpC beta-lactamases MOX-1, MOX-2 and MOX-9 were mobilized independently from three Aeromonas species. J Antimicrob Chemoth. 2019;74(5):1202–1206. doi:10.1093/jac/dkz025
  • Li R, Chan EW, Chen S. Characterisation of a chromosomally-encoded extended-spectrum beta-lactamase gene blaPER-3 in Aeromonas caviae of chicken origin. Int J Antimicrob Ag. 2016;47(1):103–105. doi:10.1016/j.ijantimicag.2015.10.018
  • Bogaerts P, Naas T, Saegeman V, et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D beta-lactamase in Enterobacteriaceae. J Antimicrob Chemoth. 2017;72(9):2469–2477. doi:10.1093/jac/dkx184
  • Yang S, He T, Sun J, et al. Distinct antimicrobial resistance profiling of clinically important Aeromonas spp. in Southwest China: a seven-year surveillance study. Infect Drug Resist. 2019;12:971–978. doi:10.2147/IDR.S216926
  • Del CC, Hikima J, Jang HB, et al. Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob Agents Ch. 2013;57(1):120–129. doi:10.1128/AAC.01239-12
  • Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296–316. doi:10.1128/MMBR.00048-0516760305
  • Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. doi:10.1038/3501250010830951
  • Wu CJ, Chuang YC, Lee MF, et al. Bacteremia due to extended-spectrum-β-lactamase-producing Aeromonas spp. at a medical center in Southern Taiwan. Antimicrob Agents Ch. 2011;55(12):5813–5818. doi:10.1128/AAC.00634-11
  • Naas T, Namdari F, Bogaerts P, et al. Genetic structure associated with blaOXA-18, encoding a clavulanic acid-inhibited extended-spectrum oxacillinase. Antimicrob Agents Ch. 2008;52(11):3898–3904. doi:10.1128/AAC.00403-08
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Ch. 2009;53(12):5046–5054. doi:10.1128/AAC.00774-09
  • Liu DJ, Piccirilli A, Liu DJ, Li W, Wang Y, Shen J. Deciphering the role of V88L substitution in NDM-24 metallo-β-lactamase. Catalysts. 2019;9:1–11. doi:10.3390/catal9090744