190
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China

, , , , , , ORCID Icon & show all
Pages 1941-1955 | Published online: 25 May 2021

References

  • Li ZQ, Pan HQ, Liu Q, Song H, Wang JM. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Infect Dis Poverty. 2020;9(1):151. doi:10.1186/s40249-020-00771-733148337
  • WHO. Global tuberculosis report 2020. Available from: https://apps.who.int/iris/handle/10665/336069. Accessed 1225, 2020.
  • Ding C, Wang S, Shangguan Y, et al. Epidemic trends of tuberculosis in China from 1990 to 2017: evidence from the global Burden of Disease Study. Infect Drug Resist. 2020;13:1663–1672. doi:10.2147/idr.s24969832606817
  • Wang Y, Xu C, Ren J, et al. Secular seasonality and trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-seasonal framework. Infect Drug Resist. 2020;13:733–747. doi:10.2147/IDR.S23822532184635
  • Wang Y, Xu C, Zhang S, et al. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. BMJ Open. 2019;9(7):e024409. doi:10.1136/bmjopen-2018-024409
  • Li Z, Wang Z, Song H, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Infect Drug Resist. 2019;12:1011–1020. doi:10.2147/idr.s19041831118707
  • Zhang YQ, Li XX, Li WB, et al. Analysis and predication of tuberculosis registration rates in Henan Province, China: an exponential smoothing model study. Infect Dis Poverty. 2020;9(1):123. doi:10.1186/s40249-020-00742-y32867846
  • Wang YW, Shen ZZ, Jiang Y. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. BMJ Open. 2019;9(6):e025773. doi:10.1136/bmjopen-2018-025773
  • Adeboye A, Davies O, Akinwumi O, James N, Ruffin M. Seasonality and trend forecasting of tuberculosis prevalence data in Eastern Cape, South Africa, using a hybrid model. Int J Environ Res Public Health. 2016;13(8):757. doi:10.3390/ijerph13080757
  • Zhang X, Zhang T, Young AA, Li X. Applications and comparisons of four time series models in epidemiological surveillance data. PLoS One. 2014;9(2):e88075. doi:10.1371/journal.pone.008807524505382
  • Wu W, An SY, Guan P, Huang DS, Zhou BS. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks. BMC Infect Dis. 2019;19(1):414. doi:10.1186/s12879-019-4028-x31088391
  • Wang Y, Xu C, Li Y, et al. An advanced data-driven hybrid model of SARIMA-NNNAR for tuberculosis incidence time series forecasting in Qinghai Province, China. Infect Drug Resist. 2020;13:867–880. doi:10.2147/IDR.S23285432273731
  • Tian CW, Wang H, Luo XM. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Epidemiol Infect. 2019;147:e82. doi:10.1017/S095026881800362X30868999
  • Weng RX, Fu HL, Zhang CL, et al. Time series analysis and forecasting of chlamydia trachomatis incidence using surveillance data from 2008 to 2019 in Shenzhen, China. Epidemiol Infect. 2020;148:e76. doi:10.1017/s095026882000068032178748
  • Qiu H, Zeng D, Yi J, et al. Forecasting the incidence of acute haemorrhagic conjunctivitis in Chongqing: a time series analysis. Epidemiol Infect. 2020;148:e193. doi:10.1017/S095026882000182X32807257
  • Wang KW, Deng C, Li JP, Zhang YY, Li XY, Wu MC. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol Infect. 2017;145(6):1118–1129. doi:10.1017/S095026881600321628115032
  • Pan A, Liu L, Wang C, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020;323(19):1915. doi:10.1001/jama.2020.613032275295
  • Lin YJ, Lin HC, Yang YF, et al. Association between ambient air pollution and elevated risk of tuberculosis development. Infect Drug Resist. 2019;12:3835–3847. doi:10.2147/IDR.S22782331827330
  • Taskaya-Temizel T, Casey MC. A comparative study of autoregressive neural network hybrids. Neural Net. 2005;18(5–6):781–789. doi:10.1016/j.neunet.2005.06.003
  • Zhang X, Zhang Q, Zhang G, Nie Z, Gui Z, Hybrid A. Model for annual runoff time series forecasting using Elman neural network with ensemble empirical mode decomposition. Water-Sui. 2018;10(4):416. doi:10.3390/w10040416
  • Wang H, Tian CW, Wang WM, Luo XM. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 2018;146(8):935–939. doi:10.1017/S095026881800111529708082
  • Deb M, Chakrabarty TK. A wavelet based hybrid SARIMA-ETS model to forecast electricity consumption. Elect J Appl Statistical Anal. 2017;10(2):408–430.
  • Wu Z, Huang NE. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal. 2009;01(01):1–41. doi:10.1142/s1793536909000047
  • Huang NE, Shen Z, Long SR. A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech. 1999;31(1):417–457.
  • Zuo Z, Wang M, Cui H, et al. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system. BMC Public Health. 2020;20(1):1284. doi:10.1186/s12889-020-09331-y32843011
  • Bartholomew D, Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control. 5th ed. Hoboken, New Jersey: John Wiley and Sons Inc.; 2015:14.
  • Qiu X, Ren Y, Suganthan PN, Amaratunga GAJ. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl Soft Comput. 2017;54:246–255.
  • Zhang X, Zhang Q, Zhang G, et al. Data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition. Int J Environ Res Public Health. 2018;15(5):1032. doi:10.3390/ijerph15051032
  • Zhou Q, Jiang H, Wang J, Zhou J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci Total Environ. 2014;496:264–274. doi:10.1016/j.scitotenv.2014.07.05125089688
  • Jian Z, Yan R, Gao RX, Feng Z. Performance enhancement of ensemble empirical mode decomposition. Mech Syst Signal Process. 2010;24(7):P.2104–2123.
  • Wang W, Chau K, Xu D, Chen X. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Manage. 2015;29(8):2655–2675.
  • Wang Y, Xu C, Wu W, et al. Time series analysis of temporal trends in hemorrhagic fever with renal syndrome morbidity rate in China from 2005 to 2019. Sci Rep. 2020;10(1):9609. doi:10.1038/s41598-020-66758-432541833
  • Liu Q, Li Z, Ji Y, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311–2322. doi:10.2147/idr.s20780931440067
  • Lam KC, Oshodi OS. Forecasting construction output: a comparison of artificial neural network and Box-Jenkins model. Eng Construction Arch Manage. 2016;23(3):302–322.
  • Maleki A, Nasseri S, Aminabad MS, Hadi M. Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics. Ksce J Civil Eng. 2018;(6):1–13.
  • Thoplan R. Simple v/s sophisticated methods of forecasting for Mauritius monthly tourist arrival data. Int J Stat Appl. 2014;4(5):217–223. doi:10.5923/j.statistics.20140405.01
  • Zhou L, Jing X, Yu L, et al. Using a hybrid model to forecast the prevalence of schistosomiasis in humans. Int J Environ Res Public Health. 2016;13(4):355. doi:10.3390/ijerph1304035527023573
  • Pao HT. Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy. 2009;34(10):1438–1446. doi:10.1016/j.energy.2009.04.026
  • Saba AI, Elsheikh AH. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks. Process Saf Environ Protection. 2020;141:1–8. doi:10.1016/j.psep.2020.05.029
  • Gao J, Li J, Wang M. Time series analysis of cumulative incidences of typhoid and paratyphoid fevers in China using both Grey and SARIMA models. PLoS One. 2020;15(10):e0241217. doi:10.1371/journal.pone.024121733112899
  • Yu XY, Chen Z, Qi LX. Comparative study of SARIMA and NARX models in predicting the incidence of schistosomiasis in China. Mathematical Biosci Eng. 2019;16(4):2266–2276. doi:10.3934/mbe.2019112
  • Yu L, Zhou L, Tan L, et al. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. PLoS One. 2014;9(6):e98241. doi:10.1371/journal.pone.009824124893000
  • Chen Y, Leng K, Lu Y, et al. Epidemiological features and time-series analysis of influenza incidence in urban and rural areas of Shenyang, China, 2010-2018. Epidemiol Infect. 2020;148:e29. doi:10.1017/S095026882000015132054544
  • Wang Y, Xu C, Zhang S, et al. Development and evaluation of a deep learning approach for modeling seasonality and trends in hand-foot-mouth disease incidence in mainland China. Sci Rep. 2019;9(1):8046. doi:10.1038/s41598-019-44469-931142826
  • Nury AH, Hasan K, Alam MJB. Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. J King Saud Univ. 2017;29(1):47–61.
  • Qi ZM. Neural network forecasting for seasonal and trend time series. Eur J Oper Res. 2005;501–514.
  • Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Mak. 2018;18(1):39. doi:10.1186/s12911-018-0616-829907102
  • Wei W, Jiang J, Gao L, et al. A new hybrid model using an autoregressive integrated moving average and a generalized regression neural network for the incidence of tuberculosis in Heng County, China. Am J Trop Med Hyg. 2017;97(3):799–805. doi:10.4269/ajtmh.16-064828820678
  • Wu W, Guo J, An S, et al. Comparison of two hybrid models for forecasting the incidence of hemorrhagic fever with renal syndrome in Jiangsu Province, China. PLoS One. 2015;10(8):e0135492. doi:10.1371/journal.pone.013549226270814
  • Xu J, Xu K, Li Z, et al. Forecast of dengue cases in 20 Chinese cities based on the deep learning method. Int J Environ Res Public Health. 2020;17:2. doi:10.3390/ijerph17020453
  • Hsu JL, Hsu TJ, Hsieh CH, Singaravelan A. Applying convolutional neural networks to predict the ICD-9 codes of medical records. Sensors (Basel, Switzerland). 2020;20:24. doi:10.3390/s20247116
  • Wubuli A, Li Y, Xue F, Yao X, Upur H, Wushouer Q. Seasonality of active tuberculosis notification from 2005 to 2014 in Xinjiang, China. PLoS One. 2017;12(7):e0180226. doi:10.1371/journal.pone.018022628678873
  • Sumi A, Kobayashi N. Time-series analysis of geographically specific monthly number of newly registered cases of active tuberculosis in Japan. PLoS One. 2019;14(3):e0213856. doi:10.1371/journal.pone.021385630883581
  • Rios M, Garcia JM, Sanchez JA, Perez D. A statistical analysis of the seasonality in pulmonary tuberculosis. Eur J Epidemiol. 2000;16(5):483–488. doi:10.1023/a:100765332997210997837
  • Fares A. Seasonality of tuberculosis. J Glob Infect Dis. 2011;3(1):46–55. doi:10.4103/0974-777X.7729621572609
  • Willis MD, Winston CA, Heilig CM, Cain KP, Walter ND, Mac Kenzie WR. Seasonality of tuberculosis in the United States, 1993-2008. Clin Infect Dis. 2012;54(11):1553–1560. doi:10.1093/cid/cis23522474225
  • Kim EH, Bae JM. Seasonality of tuberculosis in the Republic of Korea, 2006-2016. Epidemiol Health. 2018;40:e2018051. doi:10.4178/epih.e201805130486553
  • Thorpe LE, Frieden TR, Laserson KF, Wells C, Khatri GR. Seasonality of tuberculosis in India: is it real and what does it tell us? Lancet. 2004;364(9445):1613–1614. doi:10.1016/s0140-6736(04)17316-915519633
  • Tibet Autonomous Region Department of Tourism Development. Available from: http://lyfzt.xizang.gov.cn/. Accessed 1225, 2020.
  • Li X, Li T, Tan S. Males, ages ≥ 45 years, businessperson, floating population, and rural residents may be considered high-risk groups for tuberculosis infection in Guangzhou, China: a review of 136,394 tb confirmed cases. Rev Inst Med Trop Sao Paulo. 2013;55(5):366–368. doi:10.1590/s0036-4665201300050001324037294
  • Xiao Y, He L, Chen Y, et al. The influence of meteorological factors on tuberculosis incidence in Southwest China from 2006 to 2015. Sci Rep. 2018;8(1):10053. doi:10.1038/s41598-018-28426-629968800
  • Rao HX, Zhang X, Zhao L, et al. Spatial transmission and meteorological determinants of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis. Infect Dis Poverty. 2016;5(1):45. doi:10.1186/s40249-016-0139-427251154
  • Ganmaa D, Uyanga B, Zhou X, et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N Engl J Med. 2020;383(4):359–368. doi:10.1056/NEJMoa191517632706534
  • Rao H, Shi X, Zhang X. Using the Kulldorff’s scan statistical analysis to detect spatio-temporal clusters of tuberculosis in Qinghai Province, China, 2009-2016. BMC Infect Dis. 2017;17(1):578. doi:10.1186/s12879-017-2643-y28826399
  • WHO. The End TB Strategy. 2014. Available from: https://wwwwhoint/tb/End_TB_brochurepdf. Accessed 1225, 2020.
  • Bureau of statistics of Tibet Autonomous Region. Statistical Yearbook of Tibet 2020. Available from:http://tjj.xizang.gov.cn/. Accessed 1225, 2020.
  • Guo J, Wang J. Sorangza. A survey of the knowledge of core information on tuberculosis prevention and control in Tibet Autonomous Region. World Latest Med Inf. 2020;19(73):217–219.