2,282
Views
41
CrossRef citations to date
0
Altmetric
Original Research

Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1155-1168 | Published online: 23 Mar 2021

References

  • Shaw C, Stitt JM, Cowan ST. Staphylococci and their Classification. J Gen Microbiol. 1951;5:1010–1023. doi:10.1099/00221287-5-5-101014908038
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661. doi:10.1128/CMR.00134-1426016486
  • Gould D, Chamberlaine A. Staphylococcus aureus: a review of the literature. J Clin Nurs. 1995;4:5–12. doi:10.1111/j.1365-2702.1995.tb00004.x7704377
  • Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8:e52. doi:10.3390/antibiotics802005231052511
  • Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 2016;29:401–427. doi:10.1128/CMR.00069-1526960941
  • Ericson JE, Popoola VO, Smith PB, et al. Burden of invasive Staphylococcus aureus infections in hospitalized infants. JAMA Pediatr. 2015;169:1105–1111. doi:10.1001/jamapediatrics.2015.238026502073
  • Chambers HF. The changing epidemiology of Staphylococcus aureus. Emerg Infect Dis. 2001;7:178–182. doi:10.3201/eid0702.01020411294701
  • Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA. 2002;99:7687–7692. doi:10.1073/pnas.12210859912032344
  • David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–687.20610826
  • Algammal AM, Hetta HF, Elkelish A, et al. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Res. 2020;13:3255–3265. doi:10.2147/IDR.S272733
  • Dulon M, Haarnmann F, Peters C, Schablon A, Nienhaus A. MRSA prevalence in European healthcare settings: a review. BMC Infect Dis. 2011;11:e138. doi:10.1186/1471-2334-11-138
  • Kang C-I, Song J-H, Ko KS, Chung DR, Peck KR. Clinical features and outcome of Staphylococcus aureus infection in elderly versus younger adult patients. Int J Infect Dis. 2011;15:e58–e62. doi:10.1016/j.ijid.2010.09.01221111647
  • Gajdács M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24:892. doi:10.3390/molecules24050892
  • Stefani S, Chung DR, Lindsay JA, et al. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012;39:273–282. doi:10.1016/j.ijantimicag.2011.09.03022230333
  • Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017;61:49–59. doi:10.1042/EBC2016006328258229
  • Lebeaux D, Ghigo J-M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Boil Rev. 2014;78:510–543.
  • Henrici AT. Studies of freshwater bacteria: I. A direct microscopic technique. J Bacteriol. 1933;25:277–287. doi:10.1128/JB.25.3.277-287.193316559616
  • Bryers JD. Medical biofilm. Biotechnol Bioeng. 2008;100:1–18. doi:10.1002/bit.2183818366134
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292:107–113. doi:10.1078/1438-4221-0019612195733
  • Artini M, Papa R, Scoarughi GL, et al. Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol. 2013;114:266–277. doi:10.1111/jam.1203823057709
  • Tan X, Qin N, Wu C, et al. Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus. Sci Rep. 2015;5:e11997. doi:10.1038/srep11997
  • Chatterjee S, Maiti P, Dey R, Kundu A, Dey R. Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect. Ann Med Health Sci Res. 2014;4:100–104. doi:10.4103/2141-9248.12661224669340
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1995;284:1318–1322. doi:10.1126/science.284.5418.1318
  • Craft KM, Nyugen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibi-otic-resistance and the biofilm phenotype. Med Chem Comm. 2019;10:1231–1241. doi:10.1039/C9MD00044E
  • Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65:1955–1958. doi:10.1093/jac/dkq25720615927
  • Soto SM. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol. 2014;2014:e543974. doi:10.1155/2014/543974
  • Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7:1–7. doi:10.1038/ijos.2014.6525504208
  • Holby N. A short history of microbial biofilms and biofilm infections. APMIS. 2017;125:272–275.28407426
  • Stájer A, Barrak I, Gajdács M, Urbán E, Baráth Z. Diagnosis and management of cervicofacial actinomycosis: lessons from two distinct clinical cases. Antibiotics. 2020;9:e139. doi:10.3390/antibiotics904013932218154
  • Silva-Santana G, Cabral-Oliviera G, Oliveira DR, Nogueira BA, Pereira-Ribeiro PMA, Mattos-Guaraldi AL. Staphylococcus aureus biofilms: an opportunistic pathogen with multidrug resistance. Rev Med Microbiol. 2020. doi:10.1097/MRM.0000000000000223
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12. doi:10.1086/59501119035777
  • McCarthy H, Rudkin KJ, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:e1. doi:10.3389/fcimb.2015.00001
  • Behzadi P, Urbán E, Gajdács M. Association between biofilm-production and antibiotic resistance in uropathogenic Escherichia coli (UPEC): an in vitro study. Diseases. 2020;8:17. doi:10.3390/diseases8020017
  • Nirwati H, Sinanjung K, Fahrunissa F, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13:e20. doi:10.1186/s12919-019-0176-7
  • Rodulfo H, Acria A, Hernández A, et al. Virulence factors and integrons are associated with MDR and XDR phenotypes in nosocomial strains of Pseudomonas aeruginosa in a Venezuelan university hospital. Rev Inst Med Trop Sao Paolo. 2019;61:e20. doi:10.1590/s1678-9946201961020
  • de Campos PA, Royer S, Batistao DW, et al. Multi-drug resistance related to biofilm formation in Acinetobacter baumannii and Klebsiella pneumoniae clinical strains from different Pulsotypes. Curr Microbiol. 2016;72:617–627. doi:10.1007/s00284-016-0996-x26846651
  • Hashem YA, Amin HM, Essam TM, Yassin AS, Aziz RK. Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin. Sci Rep. 2017;7:5733. doi:10.1038/s41598-017-05901-028720810
  • Belbase A, Pant ND, Nepal K, et al. Antibiotic resistance and biofilm production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Ann Clin Microbiol Antimicrob. 2017;16:e15. doi:10.1186/s12941-017-0194-0
  • Lee JS, Bae YM, Han A, Lee SY. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Food Sci Technol. 2016;73:707–714.
  • Gajdács M, Ábrók M, Lázár A, Burián K. Increasing relevance of Gram‑positive cocci in urinary tract infections: a 10‑year analysis of their prevalence and resistance trends. Sci Rep. 2020;10. doi:10.1038/s41598-020-7483.
  • Gajdács M, Urbán E. Epidemiology and resistance trends of Staphylococcus aureus isolated from vaginal samples: a 10-year retrospective study in Hungary. Acta Dermatovenerol Alpina Pannon Adriatica. 2019;28:143–147.
  • Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of gram-negative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res. 2019;12:38. doi:10.1186/s13104-019-4084-8
  • Melo PC, Ferreira LM, Filho AN, Zafalon LF, Vicente HIG, de Souza V. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz J Microbiol. 2013;44:119–124. doi:10.1590/S1517-8382201300500003124159293
  • Greenwood PE, Nikulin MS. A Guide to Chi-Squared Testing. New York: Wiley; 1996.
  • Zhen X, Lundborg CS, Zhang M, et al. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: a multicentre study in China. Sci Rep. 2020;10:e3900. doi:10.1038/s41598-020-60825-6
  • Chen L, Tang ZY, Cui SY, et al. Biofilm production ability, virulence and antimicrobial resistance genes in Staphylococcus aureus from various veterinary hospitals. Pathogens. 2020;9:e264. doi:10.3390/pathogens904026432260416
  • Amorena B, Gracia E, Monzón M, et al. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother. 1999;44:43–55. doi:10.1093/jac/44.1.4310459809
  • Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–253. doi:10.1038/nrmicro253721407241
  • Lister LJ, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014;4:e178. doi:10.3389/fcimb.2014.00178
  • Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019;7:824. doi:10.3389/fchem.2019.0082431850313
  • Delcaru C, Alexandru I, Podgoreanu P, et al. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens. 2016;5:65. doi:10.3390/pathogens5040065
  • Dakheel KH, Rahim RA, Neela VK, Al-Obaidi JR, Hun TG, Yusoff K. Methicillin-resistant Staphylococcus aureus biofilms and their influence on bacterial adhesion and cohesion. BioMed Res Int. 2016;2016:e4708425. doi:10.1155/2016/4708425
  • Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982;37:318–326. doi:10.1128/IAI.37.1.318-326.19826179880
  • Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989;42:872–874. doi:10.1136/jcp.42.8.8722475530
  • Zimmerli W, Sendi P. Role of rifampin against Staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 2019;2:e01746–e01718.
  • Yu W, Hallinen KM, Wood KB. Interplay between antibiotic efficacy and drug-induced lysis underlies enhanced biofilm formation at subinhibitory drug concentrations. Antimicrob Agents Chemother. 2018;62:e01603–e01617. doi:10.1128/AAC.01603-1729061740
  • Penesyan A, Paulsen IT, Gillings MR, Kjelleberg S, Manefieldm MJ. Secondary effects of antibiotics on microbial biofilms. Front Microbiol. 2020;11:e2109. doi:10.3389/fmicb.2020.02109
  • Lima-e-Silva AA, Silva-Filho RG, Fernandes HMZ, et al. Sub-inhibitory concentrations of rifampicin strongly stimulated biofilm production in S. aureus. Open Microbiol J. 2017;11:142–151. doi:10.2174/187428580171101014228839494
  • Seneviratne CJ, Suriyanarayanan T, Swarup S, Chia KHB, Nagarajan N, Zhang C. Transcriptomics analysis reveals putative genes involved in biofilm formation and biofilm-associated drug resistance of Enterococcus faecalis. J Endodont. 2017;43:949–955. doi:10.1016/j.joen.2017.01.020
  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44:3357–3363. doi:10.1128/AAC.44.12.3357-3363.200011083640
  • Arslan S, Ozkardes F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz. 2007;102:29–33. doi:10.1590/S0074-02762007000100004
  • Ghasemian A, Najar Peerayeh S, Bakhshi B, Mirzaee M. Comparison of biofilm formation between Methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus. Iran Biomed J. 2016;20:175–181. doi:10.7508/ibj.2016.03.00726948126
  • Rodríguez-Lopez P, Filipello V, Di Ciccio PA, et al. Assessment of the antibiotic resistance profile, genetic heterogeneity and biofilm production of Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from the Italian swine production chain. Foods. 2020;9:e1141. doi:10.3390/foods909114132825203
  • El-Nagdy AH, Abdel-Fattah GM, Emarah Z. Detection and control of biofilm formation by Staphylococcus aureus from febrile neutropenic patient. Infect Drug Res. 2020;13:3091–3101. doi:10.2147/IDR.S259914
  • Knobloch JKM, Horstkotte MA, Rodhe H, Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol. 2002;191:101–106. doi:10.1007/s00430-002-0124-312410349
  • Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol. 2006;24:25–29. doi:10.4103/0255-0857.1989016505551
  • Bose S, Khodke M, Basak S, Mallick SK. Detection of biofilm-producing staphylococci: need of the hour. J Clin Diagn Res. 2009;3:1915–1920.
  • Piechota M, Kot B, Frankowska-Maciejewska A, Gruzewska A, Wozniak-Kosek A. Biofilm formation by methicil-lin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed Res Int. 2018;2018:e4657396. doi:10.1155/2018/4657396
  • Cha JO, Yoo JI, Yoo JS, et al. Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus. Osong Public Health Res Perspect. 2013;4:225–232. doi:10.1016/j.phrp.2013.09.00124298437
  • Souli M, Giamarellou H. Effects of slime produced by clinical isolates of coagulase negative Staphylococci on activities of various antimicrobial agents. Antimicrob Agents Chemother. 1998;42:939–941. doi:10.1128/AAC.42.4.9399559814
  • Agarwal A, Jain A. Glucose and sodium chloride induced biofilm production and ica operon in clinical isolates of staphylococci. Indian J Med Res. 2013;138:262–266.24056605
  • De Araujo GL, Coelho RL, de Carvalho CB, et al. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J Antimicrob Chemother. 2006;57:855–864. doi:10.1093/jac/dkl07116551694
  • Zhang Y, Xu D, Shi L, Li C, Yan H. Association between agr type, virulence factors, biofilm formation and antibiotic resistance of Staphylococcus aureus isolates from pork production. Front Microbiol. 2018;9:e1876. doi:10.3389/fmicb.2018.01876
  • Manandhar S, Singh A, Varma A, Pandey S, Shirvastava N. Biofilm producing clinical Staphylococcus aureus isolates augmented prevalence of antibiotic resistant cases in tertiary care hospitals of Nepal. Front Microbiol. 2018;9:e2749. doi:10.3389/fmicb.2018.02749
  • Bhattacharya S, Bir R, Majumdar T. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a Tertiary Care Hospital, Tripura, Northeast India. J Clin Diagn Microbiol. 2015;9:DC01–DC04.
  • Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med. 2018;11:25–32. doi:10.2147/IJGM.S15326829403304
  • Conceicao T, Aires-de-sousa M, Füzi M, et al. Replacement of methicillin-resistant Staphylococcus aureus clones in Hungary over time: a 10-year surveillance study. Clin Microbiol Infect. 2007;13:971–979. doi:10.1111/j.1469-0691.2007.01794.x17697003
  • Hanczvikkel A. [Multidrog-rezisztens baktériumok túlélése textíliákon: a környezeti körülmények és az antibakteriális hatóanyagok hatása] (in Hungarian). PhD thesis. University of Óbuda; 2018. Available from: http://lib.uni-obuda.hu/sites/lib.uni-obuda.hu/files/Hanczvikkel_Adrienn_ertekezes.pdf. Accessed 1112, 2020.
  • Füzi M, Bano JR, Tóth Á. Global evolution of pathogenic bacteria with extensive use of fluoroquinolone agents. Front Microbiol. 2020;11:e271. doi:10.3389/fmicb.2020.00271
  • Huang CY, Ho CF, Chen CJ, Su LH, Lin TY. Comparative molecular analysis of community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus isolates from children in northern Taiwan. Clin Microbiol Infect. 2008;14:1167–1172.19076845
  • Croes S, Deurenberg RH, Boumans ML, Beisser PS, Neef C, Stobberingh EE. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009;9:e229.
  • Luther MK, Parente DM, Caffrey AR, et al. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrob Agents Chemother. 2018;62:e02252–e02217. doi:10.1128/AAC.02252-1729530854
  • Recker M, Laabei M, Toleman MS, et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat Microbiol. 2017;2:1381–1388. doi:10.1038/s41564-017-0001-x28785103
  • Lim Y, Shin HJ, Kwon AS, Reu JH, Park G, Kim J. Predictive genetic risk markers for strong biofilm-forming Staphylococcus aureus: fnbB gene and SCCmec type III. Diagn Microbiol Infect Dis. 2013;76:539–541. doi:10.1016/j.diagmicrobio.2013.04.02123726650
  • Da fonseca batistao DW, de Campos PA, Camilo NC, et al. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: prevalence of biofilm determinants and clonal profiles. J Med Microbiol. 2016;65:286–297. doi:10.1099/jmm.0.00022826862039
  • Pozzi C, Waters EM, Rudkin JK, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi:10.1371/journal.ppat.100262622496652
  • Periasamy S, Joo HS, Duong AC, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci USA. 2012;109:1281–1286. doi:10.1073/pnas.111500610922232686
  • Roilides M, Simitsopoulou M, Katragkou A, Walsh TJ. How biofilms evade host defenses. Microbiol Spectr. 2013;3. doi:10.1128/microbiolspec.MB-0012-2014.
  • Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation and roles in human disease. Virulence. 2011;2:445–459. doi:10.4161/viru.2.5.1772421921685
  • Chua SL, Ding Y, Liu Y, et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016;6:e160162. doi:10.1098/rsob.160162
  • Garcia LG, Lemaire S, Kahl BC, et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother. 2013;68:1455–1464. doi:10.1093/jac/dkt07223485724
  • Burián K, Endrész V, Deák J, et al. Transcriptome analysis indicates an enhanced activation of adaptive and innate immunity by chlamydia-infected murine epithelial cells treated with interferon γ. J Infect Dis. 2010;9:1405–1414. doi:10.1086/656526
  • Balogh EP, Faludi I, Virók DP, Endrész V, Burián K. Chlamydophila pneumoniae induces production of the defensin-like MIG/CXCL9, which has in vitro anti-chlamydial activity. Int J Med Microbiol. 2011;301:252–259. doi:10.1016/j.ijmm.2010.08.02021056004
  • Sugimoto S, Sato F, Miyakawa R, et al. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep. 2018;8:e2554. doi:10.1038/s41598-018-20485-z
  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999;67:5427–5433. doi:10.1128/IAI.67.10.5427-5433.199910496925
  • Racenis K, Kroica J, Rezevska D, et al. S. aureus colonization, biofilm production, and phage susceptibility in peritoneal dialysis patients. Antibiotics. 2020;9:e582. doi:10.3390/antibiotics909058232906685
  • Jain A, Agarwal A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods. 2009;76:88–92. doi:10.1016/j.mimet.2008.09.01718851996
  • Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 2008;4:e1000052. doi:10.1371/journal.ppat.100005218437240
  • Moretro T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langrrud S. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol. 2003;69:5648–5655. doi:10.1128/AEM.69.9.5648-5655.200312957956
  • O’Neill E, Pozzi C, Houston P, et al. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol. 2007;45:1379–1388. doi:10.1128/JCM.02280-0617329452
  • O’Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 2014;270:179–188. doi:10.1111/j.1574-6968.2007.00688.x
  • Aricola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol. 2001;39:2151–2156. doi:10.1128/JCM.39.6.2151-2156.200111376050