340
Views
5
CrossRef citations to date
0
Altmetric
Original Research

In vitro Antimicrobial Synergy Testing of Extensively Drug-Resistant Clinical Isolates at an Organ Transplant Center in Nepal

ORCID Icon, , , , & ORCID Icon
Pages 1669-1677 | Published online: 30 Apr 2021

References

  • Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134. doi:10.3389/fmicb.2010.0013421687759
  • Gottlieb T, Nimmo GR. Antibiotic resistance is an emerging threat to public health: an urgent call to action at the Antimicrobial Resistance Summit 2011. Med J Aust. 2011;194(6):281–283. doi:10.5694/j.1326-5377.2011.tb02973.x21426279
  • Siegel RE. Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care. 2008;53(4):471–479.18364060
  • Roca I, Akova M, Baquero F, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;6:22–29. doi:10.1016/j.nmni.2015.02.00726029375
  • Rawat D, Extended-spectrum ND. β-lactamases in gram negative bacteria. J Glob Infect Dis. 2010;2(3):263–274. doi:10.4103/0974-777X.6853120927289
  • Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci. 2013;1277:91–104. doi:10.1111/j.1749-6632.2012.06796.x23163348
  • Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–182. doi:10.1128/CMR.00036-0819136439
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. doi:10.1128/CMR.00001-0717630334
  • Cantón R, González-Alba JM, Galán JC. CTX-M Enzymes:Origin and Diffusion. Front Microbiol. 2012;3:110. doi:10.3389/fmicb.2012.0011022485109
  • Rice LB. The clinical consequences of antimicrobial resistance. Curr Opin Microbiol. 2009;12(5):476–481. doi:10.1016/j.mib.2009.08.00119716760
  • Chi H, Holo H. Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and Nisin, Farnesol and Polymyxin B against gram-positive and gram-negative bacteria. Curr Microbiol. 2018;75(3):272–277. doi:10.1007/s00284-017-1375-y29058043
  • Tallarida RJ. Quantitative methods for assessing drug synergism. Genes Cancer. 2011;2(11):1003–1008. doi:10.1177/194760191244057522737266
  • Gunnison JB, Shevky MC, Bruff JA, Coleman VR, Jawetz E. Studies on antibiotic synergism and antagonism: the effect in vitro of combinations of antibiotics on bacteria of varying resistance to single antibiotics. J Bacteriol. 1953;66(2):150–158. doi:10.1128/JB.66.2.150-158.195313084551
  • Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52(12):4124–4128. doi:10.1128/JCM.01121-1424920779
  • Eliopoulos GM, Moellering JRC. Antibiotic synergism and antimicrobial combinations in clinical infections. Rev Infect Dis. 1982;4(2):282–293. doi:10.1093/clinids/4.2.2827051231
  • Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect. 2006;12(4):315–321. doi:10.1111/j.1469-0691.2005.01351.x16524407
  • Percin D, Akyol S, Kalin G. In vitro synergism of combinations of colistin with selected antibiotics against colistin-resistant Acinetobacter baumannii. GMS Hyg Infect Control. 2014;9(2):Doc14. doi:10.3205/dgkh00023425152859
  • Fantin B, Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992;36(5):907–912. doi:10.1128/AAC.36.5.9071510412
  • WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. WHO News Release; Geneva. 2017.
  • Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J, Eds. Harrison’s Principles of Internal Medicine. Mcgraw-hill; 2015:19e.
  • Isenberg H, ed. Clinical Microbiology Procedures Handbook. Washington, DC: American Society for Microbiology (ASM); 2007.
  • Patel JB, Cockerill FR, Eliopoulos GM, et al. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, Supplement M100S, 26th ed. Wayne PA; 2016,
  • Magiorakos AP, Srinivasan A, Carey RB. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Segal H, Elisha BG. Use of Etest MBL strips for the detection of carbapenemases in Acinetobacter baumannii. J Antimicrob Chemother. 2005;56(3):598. doi:10.1093/jac/dki26516046465
  • Daoud Z, Afif C. Escherichia coli isolated from urinary tract infections of lebanese patients between 2000 and 2009: epidemiology and profiles of resistance. Chemother Res Pract. 2011;2011:218431. doi:10.1155/2011/21843122295204
  • Basak S, Singh P, Rajurkar M. Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog. 2016;2016:4065603. doi:10.1155/2016/406560326942013
  • Nepal K, Pant ND, Neupane B, et al. Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Ann Clin Microbiol Antimicrob. 2017;16(1):62. doi:10.1186/s12941-017-0236-728927454
  • Gandra S, Tseng KK, Arora A, et al. The mortality burden of multidrug-resistant pathogens in India: a retrospective, observational study. Clin Infect Dis. 2019;69(4):563–570. doi:10.1093/cid/ciy95530407501
  • Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics (Basel). 2019;8(2):37. doi:10.3390/antibiotics8020037
  • Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill. 2008;13(47):19045. doi:10.2807/ese.13.47.19045-en19021957
  • Ghadri H, Vaez H, Razavi-Azarkhiavi K, et al. Prevalence and antibiotic susceptibility patterns of extended-spectrum ß-lactamase and metallo-ß-lactamase-producing uropathogenic Escherichia coli isolates. Lab Med. 2014;45(4):291–296. doi:10.1309/LMHEP4VQHEY2POOK25316659
  • Ugwu MC, Igbokwe JO, Okezie U, et al. Prevalence of ESBLs and MBLs among Escherichia coli and Klebsiella pneumoniae isolates from a Nigerian Abattoir. J Trop Dis. 2018;6:2. doi:10.4172/2329-891X.1000261
  • Mishra SK, Shrestha R, Rijal B, et al. The bad, the ugly and the demon: a tale of extensively drug-resistant, extended-spectrum-beta-lactamase- and metallo-beta-lactamase-producing superbugs associated with nosocomial pneumonia. Asian Pac J Trop Dis. 2015;5(1):71–76. doi:10.1016/S2222-1808(14)60630-7
  • Kulkarni SR, Peerapur BV, Sailesh KS. Isolation and antibiotic susceptibility pattern of Escherichia coli from urinary tract infections in a Tertiary Care Hospital of North Eastern Karnataka. J Nat Sci Biol Med. 2017;8(2):176–180. doi:10.4103/0976-9668.21001228781483
  • Kibret M, Abera B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr Health Sci. 2011;11(Suppl 1):S40–5. doi:10.4314/ahs.v11i3.7006922135643
  • Lin WP, Wang JT, Chang SC, et al. The antimicrobial susceptibility of Klebsiella pneumoniae from Community Settings in Taiwan, a Trend Analysis. Sci Rep. 2016;6:36280. doi:10.1038/srep3628027824151
  • Srinivasan S, Saldanha J, Abhyankar S, et al. Antibiotic sensitivity pattern of Klebsiella species in burn wounds at Bai Jerbai Wadia hospital for children, Mumbai, India-a 21 year study. Int J Burns Trauma. 2017;7(5):64–71.29034128
  • Javiya VA, Ghatak SB, Patel KR, et al. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol. 2008;40(5):230–234. doi:10.4103/0253-7613.4415620040963
  • Ahmed OB. Incidence and antibiotic susceptibility pattern of pseudomonas aeruginosa isolated from inpatients in two Tertiary Hospitals. Clin Microbiol. 2016;5:2. doi:10.4172/2327-5073.1000235
  • Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004;4(8):519–527. doi:10.1016/S1473-3099(04)01108-915288826
  • Kumar A, Safdar N, Kethireddy S, et al. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38(8):1651–1664. doi:10.1097/CCM.0b013e3181e96b9120562695
  • Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450–470. doi:10.1128/CMR.05041-1122763634
  • Traugott KA, Echevarria K, Maxwell P, et al. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy. 2011;31(6):598–608. doi:10.1592/phco.31.6.59821923444
  • Ramadan RA, Gebriel MG, Kadry HM, et al. Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infect Drug Resist. 2018;11:1261–1269. doi:10.2147/IDR.S17023330197524