93
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The lncRNA CCAT2 Rs6983267 G Variant Contributes to Increased Sepsis Susceptibility in a Southern Chinese Population

, ORCID Icon, , , , , & show all
Pages 2969-2976 | Published online: 04 Aug 2021

References

  • Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–810. doi:10.1001/jama.2016.028726903338
  • Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):1070–1077. doi:10.1111/j.1532-5415.2012.03989.x22642542
  • Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):1167–1174. doi:10.1097/CCM.0b013e31827c09f823442987
  • Vincent JL, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2:380–386. doi:10.1016/S2213-2600(14)70061-X24740011
  • Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8. doi:10.1097/01.PCC.0000149131.72248.E615636651
  • Jabandziev P, Smerek M, Michalek J, Fedora M, Kosinova L. Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Critical Care. 2014;18:R1. doi:10.1186/cc1317424383711
  • Cernada M, Serna E, Bauerl C, Collado MC, Perez-Martinez G, Vento M. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133(5):e1203–11. doi:10.1542/peds.2013-255224709930
  • Liu C, Jin P, Luo Y, et al. Association of Single-Nucleotide Polymorphisms of C-Reactive Protein Gene with Susceptibility to Infantile Sepsis in Southern China. Med Sci Monitor. 2018;24:590–595. doi:10.12659/MSM.908602
  • Yao L, Zhou L, Deng Y, et al. Association Between Genetic Polymorphisms In TYMS And Glioma Risk In Chinese Patients: a Case-Control Study. Onco Targets Ther. 2019;12:8241–8247. doi:10.2147/OTT.S22120431632074
  • Varljen T, Sekulovic G, Rakic O, et al. Genetic variant rs16944 in IL1B gene is a risk factor for early-onset sepsis susceptibility and outcome in preterm infants. Inflamm Res. 2019;69(2):155–157. doi:10.1007/s00011-019-01301-431863173
  • Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2 Diabetes-Associated Genetic Polymorphisms as Potential Disease Predictors. Diabetes Metab Syndr Obes. 2019;12:2689–2706. doi:10.2147/DMSO.S23006131908510
  • Wu Y, Zhou L, Deng Y, et al. The polymorphisms (rs3213801 and rs5744533) of DNA polymerase kappa gene are not related with glioma risk and prognosis: a case-control study. Cancer Med. 2019;8(17):7446–7453. doi:10.1002/cam4.256631595696
  • Castellanos-Rubio A, Ghosh S. Disease-Associated SNPs in Inflammation-Related lncRNAs. Front Immunol. 2019;10:420. doi:10.3389/fimmu.2019.0042030906297
  • Mathy NW, Chen XM. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem. 2017;292:12375–12382. doi:10.1074/jbc.R116.76088428615453
  • Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: a New Paradigm. Cancer Res. 2017;77(15):3965–3981. doi:10.1158/0008-5472.CAN-16-263428701486
  • Li M, Duan L, Li Y, Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci. 2019.
  • Ho J, Chan H, Wong SH, et al. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Critical Care. 2016;20:383. doi:10.1186/s13054-016-1555-327890015
  • Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15:423–437.24776770
  • Zheng D, Yu Y, Li M, et al. Inhibition of MicroRNA 195 Prevents Apoptosis and Multiple-Organ Injury in Mouse Models of Sepsis. J Infect Dis. 2016;213:1661–1670. doi:10.1093/infdis/jiv76026704614
  • Ling H, Spizzo R, Atlasi Y. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–1461. doi:10.1101/gr.152942.11223796952
  • Wang CY, Hua L, Yao KH, Chen JT. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Clin Exp Pathol. 2015;8:779–785.25755774
  • Lazniak S, Lutkowska A, Warenczak-Florczak Z, Sowinska A, Tsibulski A, Roszak A. The association of CCAT2 rs6983267 SNP with MYC expression and progression of uterine cervical cancer in the Polish population. Arch Gynecol Obstet. 2018;297:1285–1292. doi:10.1007/s00404-018-4740-629525942
  • Yan L, Wu X, Yin X, Du F, Liu Y, Ding X. LncRNA CCAT2 promoted osteosarcoma cell proliferation and invasion. J Cell Mol Med. 2018;22:2592–2599. doi:10.1111/jcmm.1351829502343
  • Gnanaprakasam JN, Wang R. MYC in Regulating Immunity: metabolism and Beyond. Genes. 2017;8. doi:10.3390/genes8030088
  • Zhang Y, Huang T, Jiang L, et al. MCP-induced protein 1 attenuates sepsis-induced acute lung injury by modulating macrophage polarization via the JNK/c-Myc pathway. Int Immunopharmacol. 2019;75:105741. doi:10.1016/j.intimp.2019.10574131323531
  • Li Y, Zhang F, Cong Y, Zhao Y. Identification of potential genes and miRNAs associated with sepsis based on microarray analysis. Mol Med Rep. 2018;17:6227–6234. doi:10.3892/mmr.2018.866829512785
  • Liu L, Lu Y, Martinez J, et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1alpha-dependent. Proc Natl Acad Sci U S A. 2016;113:1564–1569. doi:10.1073/pnas.151800011326811453
  • Che D, Huang W, Fang Z, et al. The lncRNA CCAT2 rs6983267 G allele is associated with decreased susceptibility to recurrent miscarriage. J Cell Physiol. 2019;234:20577–20583. doi:10.1002/jcp.2866130982978
  • Zhao X, Wei X, Zhao L, et al. The rs6983267 SNP and long non-coding RNA CARLo-5 are associated with endometrial carcinoma. Environ Mol Mutagen. 2016;57:508–515. doi:10.1002/em.2203127432114
  • Shaker OG, Senousy MA, Elbaz EM. Association of rs6983267 at 8q24, HULC rs7763881 polymorphisms and serum lncRNAs CCAT2 and HULC with colorectal cancer in Egyptian patients. Sci Rep. 2017;7(1):16246. doi:10.1038/s41598-017-16500-429176650
  • Kim J, Lee J, Oh JH, et al. Associations among dietary seaweed intake, c-MYC rs6983267 polymorphism, and risk of colorectal cancer in a Korean population: a case-control study. Eur J Nutr. 2019;58(8):3255–3266. doi:10.1007/s00394-018-1868-x30498867
  • Gong J, Tian J, Lou J, et al. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267. Ann Oncol. 2018;29:632–639. doi:10.1093/annonc/mdx78929267898
  • Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.23361625
  • Watson RS, Crow SS, Hartman ME, Lacroix J, Odetola FO. Epidemiology and Outcomes of Pediatric Multiple Organ Dysfunction Syndrome. Pediatr Crit Care Med. 2017;18:S4–S16. doi:10.1097/PCC.000000000000104728248829
  • Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–442. doi:10.1093/jnci/djh07515026468
  • Sahasrabudhe R, Estrada A, Lott P, et al. The 8q24 rs6983267G variant is associated with increased thyroid cancer risk. Endocr Relat Cancer. 2015;22:841–849. doi:10.1530/ERC-15-008126290501
  • Haerian MS, Haerian BS, Rooki H, et al. Association of 8q24.21 rs10505477-rs6983267 haplotype and age at diagnosis of colorectal cancer. Asian Pacific j Cancer Prevent. 2014;15:369–374. doi:10.7314/APJCP.2014.15.1.369
  • Kasagi Y, Oki E, Ando K, et al. The Expression of CCAT2, a Novel Long Noncoding RNA Transcript, and rs6983267 Single-Nucleotide Polymorphism Genotypes in Colorectal Cancers. Oncology. 2017;92:48–54. doi:10.1159/00045214327875818
  • Jung KJ, Kim MT, Jee SH. Impaired fasting glucose, single-nucleotide polymorphisms, and risk for colorectal cancer in Koreans. Epidemiol Health. 2016;38:e2016002. doi:10.4178/epih.e201600226797220
  • Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171(1301–1315):e14. doi:10.1016/j.cell.2017.11.013
  • Liu T, Zhou Y, Ko KS, Yang H. Interactions between Myc and Mediators of Inflammation in Chronic Liver Diseases. Mediators Inflamm. 2015;2015:276850. doi:10.1155/2015/27685026508814
  • Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274:330–353. doi:10.1111/imr.1249927782333
  • Takatsuno Y, Mimori K, Yamamoto K, et al. The rs6983267 SNP is associated with MYC transcription efficiency, which promotes progression and worsens prognosis of colorectal cancer. Ann Surg Oncol. 2013;20:1395–1402. doi:10.1245/s10434-012-2657-z22976378
  • Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882–884. doi:10.1038/ng.40319561607
  • Mansur A, von Gruben L, Popov AF, et al. The regulatory toll-like receptor 4 genetic polymorphism rs11536889 is associated with renal, coagulation and hepatic organ failure in sepsis patients. J Transl Med. 2014;12:177. doi:10.1186/1479-5876-12-17724950711
  • Chen K, Wang YT, Gu W, et al. Functional significance of the Toll-like receptor 4 promoter gene polymorphisms in the Chinese Han population. Crit Care Med. 2010;38:1292–1299. doi:10.1097/CCM.0b013e3181d8ad1220228685
  • Emr BM, Alcamo AM, Carcillo JA, Aneja RK, Mollen KP. Pediatric Sepsis Update: how Are Children Different? Surg Infect (Larchmt). 2018;19:176–183. doi:10.1089/sur.2017.31629394150