303
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Tenebrio molitor as an Alternative Model to Analyze the Sporothrix Species Virulence

, , ORCID Icon, & ORCID Icon
Pages 2059-2072 | Published online: 03 Jun 2021

References

  • Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, et al. Sporotrichosis between 1898 and 2017: the evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol. 2018;56(suppl_1):126–143.29538731
  • Mora-Montes HM, Dantas Ada S, Trujillo-Esquivel E, de Souza Baptista AR, Lopes-Bezerra LM. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era. FEMS Yeast Res. 2015;15:6.
  • López-Romero E, Reyes-Montes Mdel R, Pérez-Torres A, et al. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol. 2011;6(1):85–102.21162638
  • Rossow JA, Queiroz-Telles F, Caceres DH, et al. A one health approach to combatting Sporothrix brasiliensis: narrative review of an emerging zoonotic fungal pathogen in South America. J Fungi (Basel). 2020;6:4.
  • Han HS, Kano R. Feline sporotrichosis in Asia. Braz J Microbiol. 2020.
  • Rodrigues AM, Della Terra PP, Gremião ID, Pereira SA, Orofino-Costa R, de Camargo ZP. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia. 2020;185(5):813–842.32052359
  • Queiroz-Telles F, Buccheri R, Benard G. Sporotrichosis in immunocompromised hosts. J Fungi (Basel). 2019;5(1):8.
  • de Beer ZW, Duong TA, Wingfield MJ. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol. 2016;83:165–191.27616802
  • Rodrigues AM, de Hoog GS, de Camargo ZP. Sporothrix species causing outbreaks in animals and humans driven by animal-animal transmission. PLoS Pathog. 2016;12(7):e1005638.27415796
  • Etchecopaz AN, Lanza N, Toscanini MA, et al. Sporotrichosis caused by Sporothrix brasiliensis in Argentina: case report, molecular identification and in vitro susceptibility pattern to antifungal drugs. J Mycol Med. 2020;30(1):100908.31732417
  • Gremião ID, Miranda LH, Reis EG, Rodrigues AM, Pereira SA. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathog. 2017;13(1):e1006077.28103311
  • Moussa TAA, Kadasa NMS, Al Zahrani HS, et al. Origin and distribution of Sporothrix globosa causing sapronoses in Asia. J Med Microbiol. 2017;66(5):560–569.28327256
  • Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S. Global epidemiology of sporotrichosis. Med Mycol. 2015;53(1):3–14.25526781
  • Camacho E, León-Navarro I, Rodríguez-Brito S, Mendoza M, Niño-Vega GA. Molecular epidemiology of human sporotrichosis in Venezuela reveals high frequency of Sporothrix globosa. BMC Infect Dis. 2015;15:94.25880588
  • Martinez-Alvarez JA, Perez-Garcia LA, Mellado-Mojica E, et al. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 2017;8:843.28539922
  • Teixeira MM, de Almeida LG, Kubitschek-Barreira P, et al. Comparative genomics of the major fungal agents of human and animal sporotrichosis: sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics. 2014;15:943.25351875
  • Silva-Bailão MG, de Sousa Lima P, Evangelista de Oliveira MM, et al. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect. 2020.
  • Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence. 2013;4(3):241–249.23324498
  • Huang L, Gao W, Giosa D, et al. Whole-genome sequencing and in silico analysis of two strains of Sporothrix globosa. Genome Biol Evol. 2016;8(11):3292–3296.27635048
  • Oliveira MME, Almeida-Paes R, Corrêa-Moreira D, et al. A case of sporotrichosis caused by different Sporothrix brasiliensis strains: mycological, molecular, and virulence analyses. Mem Inst Oswaldo Cruz. 2019;114:e190260–e190260.31644705
  • Batista-Duharte A, Téllez-Martínez D, Aparecida Jellmayer J, et al. Repeated exposition to mercury (ii) chloride enhances susceptibility to S. schenckii sensu stricto infection in mice. J Fingi (Basel). 2018;4(2):64.
  • Della Terra PP, Rodrigues AM, Fernandes GF, Nishikaku AS, Burger E, de Camargo ZP. Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis. PLoS Negl Trop Dis. 2017;11(8):e0005903–e0005903.28854184
  • Cruz Choappa R, Pérez Gaete S, Rodríguez Badilla V, Vieille Oyarzo P, Opazo Sanchez H. Virulence of Sporothrix globosa in murine models. Rev Argent Microbiol. 2016;48(3):196–199.27566945
  • Castro RA, Kubitschek-Barreira PH, Teixeira PA, et al. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One. 2013;8(10):e75656.24116065
  • Fernandes KSS, Mathews HL, Bezerra LML. Differences in virulence of Sporothrix schenckii conidia related to culture conditions and cell-wall components. J Med Microbiol. 1999;48(2):195–203.9989648
  • Almeida-Paes R, De oliveira LC, Oliveira MME, Gutierrez-Galhardo MC, Nosanchuk JD, Zancopé-Oliveira RM. Phenotypic characteristics associated with virulence of clinical isolates from the Sporothrix complex. Biomed Res Int. 2015;2015:212308.25961005
  • Kong X, Xiao T, Lin J, Wang Y, Chen HD. Relationships among genotypes, virulence and clinical forms of Sporothrix schenckii infection. Clin Microbiol Infect. 2006;12(11):1077–1081.17002606
  • Arrillaga-Moncrieff I, Capilla J, Mayayo E, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15(7):651–655.19624508
  • Teixeira PA, De castro RA, Nascimento RC, et al. Cell surface expression of adhesins for fibronectin correlates with virulence in. Sporothrix Schenckii Microbiology. 2009;155(Pt 11):3730–3738.19762444
  • Jacobsen ID. Galleria mellonella as a model host to study virulence of Candida. Virulence. 2014;5(2):237–239.24384470
  • Clavijo-Giraldo DM, Matinez-Alvarez JA, Lopes-Bezerra LM, et al. Analysis of Sporothrix schenckii sensu stricto and Sporothrix brasiliensis virulence in Galleria mellonella. J Microbiol Methods. 2016;122:73–77.26826293
  • Lozoya-Perez NE, Casas-Flores S, de Almeida JRF, et al. Silencing of OCH1 unveils the role of Sporothrix schenckii N-linked glycans during the host-fungus interaction. Infect Drug Resist. 2019;12:67–85.30643435
  • Lozoya-Perez NE, Casas-Flores S, Martinez-Alvarez JA, et al. Generation of Sporothrix schenckii mutants expressing the green fluorescent protein suitable for the study of host-fungus interactions. Fungal Biol. 2018;122(10):1023–1030.30227928
  • Lozoya-Perez NE, Clavijo-Giraldo DM, Martinez-Duncker I, et al. Influences of the culturing media in the virulence and cell wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. J Fungi (Basel). 2020;6:4.
  • Passos JS, Martino LC, Dartora VFC, Araujo GLB, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur j Pharm Sci. 2020;149:105296.32151706
  • Martinez-Alvarez JA, Garcia-Carnero LC, Kubitschek-Barreira PH, et al. Analysis of some immunogenic properties of the recombinant Sporothrix schenckii Gp70 expressed in Escherichia coli. Future Microbiol. 2019;14:397–410.30854893
  • Desalermos A, Fuchs BB, Mylonakis E. Selecting an invertebrate model host for the study of fungal pathogenesis. PLOS Pathog. 2012;8(2):e1002451.22319439
  • de Souza PC, Morey AT, Castanheira GM, et al. Tenebrio molitor (Coleoptera: tenebrionidae) as an alternative host to study fungal infections. J Microbiol Methods. 2015;118:182–186.26453946
  • Tamez-Castrellon AK, Romeo O, Garcia-Carnero LC, Lozoya-Perez NE, Mora-Montes HM. Virulence factors in Sporothrix schenckii, one of the causative agents of sporotrichosis. Curr Protein Pept Sci. 2020;21(3):295–312.31589121
  • Canteri de Souza P, Custodio Caloni C, Wilson D, Sergio Almeida R. An invertebrate host to study fungal infections, mycotoxins and antifungal drugs: tenebrio molitor. J Fungi (Basel). 2018;4:4.
  • Vigneron A, Jehan C, Rigaud T, Moret Y. Immune defenses of a beneficial pest: the mealworm beetle, Tenebrio molitor. Front Physiol. 2019;10:138.30914960
  • Mora-Montes HM, Robledo-Ortiz CI, Gonzalez-Sanchez LC, Lopez-Esparza A, Lopez-Romero E, Flores-Carreon A. Purification and biochemical characterisation of endoplasmic reticulum alpha1,2-mannosidase from Sporothrix Schenckiil. Mem Inst Oswaldo Cruz. 2010;105(1):79–85.20209334
  • Madrid H, Cano J, Gene J, Bonifaz A, Toriello C, Guarro J. Sporothrix globosa, a pathogenic fungus with widespread geographical distribution. Rev Iberoam Micol. 2009;26(3):218–222.19635441
  • Garcia-Carnero LC, Clavijo-Giraldo DM, Gomez-Gaviria M, et al. Early virulence predictors during the Candida species-Galleria mellonella Interaction. J Fungi (Basel). 2020;6:3.
  • Gomez-Gaviria M, Lozoya-Perez NE, Staniszewska M, Franco B, Nino-Vega GA, Mora-Montes HM. Loss of Kex2 affects the Candida albicans cell wall and interaction with innate immune cells. J Fungi (Basel). 2020;6:2.
  • Hernandez-Chavez MJ, Franco B, Clavijo-Giraldo DM, Hernandez NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. FEMS Yeast Res. 2018;18:5.
  • Gonzalez-Hernandez RJ, Jin K, Hernandez-Chavez MJ, et al. Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family. Front Microbiol. 2017;8:2156.29163439
  • Navarro-Arias MJ, Defosse TA, Dementhon K, et al. Disruption of protein mannosylation affects candida guilliermondii cell wall, immune sensing, and virulence. Front Microbiol. 2016;7:1951.27994582
  • Ludwig D, Barsa MC. Activity of dehydrogenase enzymes during the metamorphosis of the mealworm, Tenebrio molitor Linnaeus. Ann Entomol Soc Am. 1958;51(3):311–314.
  • Ito T, Fraenkel G. The effect of nitrogen starvation on Tenebrio molitor L. J Insect Physiol. 1966;12(7):803–817.4308372
  • Eriksson T, Andere AA, Kelstrup H, Emery VJ, Picard CJ. The yellow mealworm (Tenebrio molitor) genome: a resource for the emerging insects as food and feed industry. J Insects Food Feed. 2020;6(5):445–455.
  • Bergin D, Brennan M, Kavanagh K. Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microb Infect. 2003;5(15):1389–1395.
  • Mesa-Arango AC, Forastiero A, Bernal-Martinez L, Cuenca-Estrella M, Mellado E, Zaragoza O. The non-mammalian host Galleria mellonella can be used to study the virulence of the fungal pathogen Candida tropicalis and the efficacy of antifungal drugs during infection by this pathogenic yeast. Med Mycol. 2013;51(5):461–472.23170962
  • Roy MC, Kim Y. Tolerance of the mealworm beetle, Tenebrio molitor, to an entomopathogenic nematode, Steinernema feltiae, at two infection foci, the intestine and the hemocoel. J Invertebr Pathol. 2020;174:107428.32553640
  • Lim S, Yun HK, Kang KM, Lee BL, Won R, Lee IH. Interactions between Mycoplasma pulmonis and immune systems in the mealworm beetle, Tenebrio molitor. Insect Biochem Mol Biol. 2019;114:103231.31479697
  • Valtonen TM, Viitaniemi H, Rantala MJ. Copulation enhances resistance against an entomopathogenic fungus in the mealworm beetle. Tenebrio Molitor Parasitology. 2010;137(6):985–989.20128944
  • Kan H, Kim CH, Kwon HM, et al. Molecular control of phenoloxidase-induced melanin synthesis in an insect. J Biol Chem. 2008;283(37):25316–25323.18628205
  • Kavanagh K, Sheehan G. The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi (Basel). 2018;4:3.
  • Tamez-Castrellon AK, Romo-Lucio R, Martinez-Duncker I, Mora-Montes HM. Generation of a synthetic binary plasmid that confers resistance to nourseothricin for genetic engineering of Sporothrix schenckii. Plasmid. 2018;100:1–5.30236508
  • Moret Y. “Trans-generational immune priming”: specific enhancement of the antimicrobial immune response in the mealworm beetle Tenebrio Molitor. Proc Biol Sci. 2006;273(1592):1399–1405.16777729
  • Dhinaut J, Chogne M, Moret Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J Anim Ecol. 2018;87(2):448–463.28239855
  • Krappmann S. CRISPR-Cas9, the new kid on the block of fungal molecular biology. Med Mycol. 2017;55(1):16–23.27811178
  • Rantala MJ, Dubovskiy IM, Pölkki M, Krama T, Contreras-Garduño J, Krams IA. Effect of juvenile hormone on resistance against entomopathogenic fungus Metarhizium robertsii differs between sexes. J Fungi (Basel). 2020;6(4):298.
  • Bharadwaj A, Stafford KC 3rd. Potential of Tenebrio molitor (Coleoptera: tenebrionidae) as a bioassay probe for Metarhizium brunneum (Hypocreales: clavicipitaceae) activity against Ixodes scapularis (Acari: ixodidae). J Econ Entomol. 2011;104(6):2095–2098.22299376
  • Jirakkakul J, Roytrakul S, Srisuksam C, et al. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. Fungal Biol. 2018;122(2–3):156–171.29458719
  • Fornari G, Gomes RR, Degenhardt-Goldbach J, et al. A model for trans-kingdom pathogenicity in Fonsecaea agents of human chromoblastomycosis. Front Microbiol. 2018;9:2211.30356683
  • Kim MH, Joo CH, Cho MY, et al. Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae. Eur j Biochem. 2000;267(9):2599–2608.10785380
  • Keshavarz M, Jo YH, Park KB, et al. TmDorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Sci Rep. 2019;9:16878.31728023
  • Keshavarz M, Jo YH, Edosa TT, Bae YM, Han YS. TmPGRP-SA regulates antimicrobial response to bacteria and fungi in the fat body and gut of Tenebrio molitor. Int J Mol Sci. 2020;21(6):2113.
  • Rodrigues AM, Kubitschek-Barreira PH, Fernandes GF, de Almeida SR, Lopes-Bezerra LM, de Camargo ZP. Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. J Proteomics. 2015;115:8–22.25434489
  • de Almeida JRF, Jannuzzi GP, Kaihami GH, Breda LCD, Ferreira KS, de Almeida SR. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Sci Rep. 2018;8(1):4192.29520092
  • Chen F, Jiang R, Wang Y, et al. Recombinant phage elicits protective immune response against systemic S. globosa infection in mouse model. Sci Rep. 2017;7:42024.28165018