376
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Inhaled Colistimethate Sodium in the Management of Patients with Bronchiectasis Infected by Pseudomonas aeruginosa: A Narrative Review of Current Evidence

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 7271-7292 | Received 28 Jul 2022, Accepted 02 Dec 2022, Published online: 14 Dec 2022

References

  • Cantón R, Máiz L, Escribano A, et al. Spanish consensus on the prevention and treatment of Pseudomonas aeruginosa bronchial infections in cystic fibrosis patients. Arch Bronconeumol. 2015;51(3):140–150. doi:10.1016/j.arbres.2014.09.021
  • Martínez-García MÁ, Máiz L, Olveira C, et al. Spanish guidelines on treatment of Bronchiectasis in adults. Arch Bronconeumol. 2018;54:88–98. doi:10.1016/j.arbres.2017.07.016
  • Polverino E, Goeminne PC, McDonnell MJ, et al. European respiratory society guidelines for the management of adult bronchiectasis. Eur Respir J. 2017;50(3):1700629. doi:10.1183/13993003.00629-2017
  • Hill AT, Sullivan AL, Chalmers JD, et al. British thoracic society guideline for bronchiectasis in adults. Thorax. 2019;74(Suppl 1):1–69.
  • Høiby N. Antibiotic therapy for chronic infection of Pseudomonas in the lung. Annu Rev Med. 1993;44:1–10. doi:10.1146/annurev.me.44.020193.000245
  • Littlewood JM, Koch C, Lambert PA, et al. A ten year review of colomycin. Respir Med. 2000;94(7):632–640. doi:10.1053/rmed.2000.0834
  • Flume P, Chalmers J, Olivier K. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet. 2018;392(10150):880–890. doi:10.1016/S0140-6736(18)31767-7
  • Martínez-García MÁ, Máiz L, Olveira C, et al. Spanish guidelines on the evaluation and diagnosis of Bronchiectasis in adults. Arch Bronconeumol. 2018;54:79–87. doi:10.1016/j.arbres.2017.07.015
  • Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162:1277–1284. doi:10.1164/ajrccm.162.4.9906120
  • Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonisation on prognosis in adult Bronchiectasis. Ann Am Thorac Soc. 2015;12:1602–1611. doi:10.1513/AnnalsATS.201506-333OC
  • Chalmers JD, Hill AT. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol Immunol. 2013;55(1):27–34. doi:10.1016/j.molimm.2012.09.011
  • Cullen L, McClean S. Bacterial adaptation during chronic respiratory infections. Pathog. 2015;4:66–89. doi:10.3390/pathogens4010066
  • Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index an international derivation and validation study. Am J Respir Crit Care Med. 2014;189:576–585. doi:10.1164/rccm.201309-1575OC
  • Martínez-García MA, De Gracia J, Relat MV, et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur Respir J. 2014;43:1357–1367. doi:10.1183/09031936.00026313
  • Martinez-Garcia MA, Athanazio RA, Girón R, et al. Predicting high risk of exacerbations in bronchiectasis: the E-FACED score. Int J COPD. 2017;12:275–284. doi:10.2147/COPD.S121943
  • Martínez-García MA, Soler-Cataluña -J-J, Perpiñá-Tordera M, Román-Sánchez P, Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest. 2007;132:1565–1572. doi:10.1378/chest.07-0490
  • Martinez-García MA, Oscullo G, Posadas T, et al. Pseudomonas aeruginosa and lung function decline in patients with bronchiectasis. Clin Microbiol Infect. 2021;27:428–434. doi:10.1016/j.cmi.2020.04.007
  • Goeminne PC, Nawrot TS, Ruttens D, Seys S, Dupont LJ. Mortality in non-cystic fibrosis bronchiectasis: a prospective cohort analysis. Respir Med. 2014;108:287–296. doi:10.1016/j.rmed.2013.12.015
  • Loebinger MR, Wells AU, Hansell DM, et al. Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur Respir J. 2009;34:843–849. doi:10.1183/09031936.00003709
  • Rogers GB, Zain NMM, Bruce KD, et al. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann Am Thorac Soc. 2014;11:496–503. doi:10.1513/AnnalsATS.201310-335OC
  • Martinez-Garcia MÁ, Athanazio R, Gramblicka G, et al. Prognostic value of frequent exacerbations in Bronchiectasis: the relationship with disease severity. Arch Bronconeumol. 2019;55:81–87. doi:10.1016/j.arbres.2018.07.002
  • De La Rosa D, Martínez-Garcia MA, Olveira C, Girón R, Máiz L, Prados C. Annual direct medical costs of bronchiectasis treatment: impact of severity, exacerbations, chronic bronchial colonization and chronic obstructive pulmonary disease coexistence. Chron Respir Dis. 2016;13:361–371. doi:10.1177/1479972316643698
  • Chalmers JD, Aliberti S, Filonenko A, et al. Characterization of the “frequent exacerbator phenotype” in bronchiectasis. Am J Respir Crit Care Med. 2018;197:1410–1420. doi:10.1164/rccm.201711-2202OC
  • Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodynamics of colistin. Clin Pharmacokinet. 2017;56:1441–1460. doi:10.1007/s40262-017-0561-1
  • Antoniu SA, Cojocaru I. Inhaled colistin for lower respiratory tract infections. Expert Opin Drug Deliv. 2012;9(3):333–342. doi:10.1517/17425247.2012.660480
  • Li J, Nation RL. Comment on: pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;58:222–223. doi:10.1093/jac/dkl169
  • Couet W, Gregoire N, Gobin P, et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther. 2011;89:875–879. doi:10.1038/clpt.2011.48
  • Imberti R, Cusato M, Villani P, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest. 2010;138(6):1333–1339. doi:10.1378/chest.10-0463
  • Yapa SWS, Li J, Patel K, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58(5):2570–2579. doi:10.1128/AAC.01705-13
  • Tsuji BT, Pogue JM, Zavascki AP, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39. doi:10.1002/phar.2209
  • Boisson M, Jacobs M, Grégoire N, et al. Comparison of intrapulmonary and systemic pharmacokinetics of Colistin Methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob Agents Chemother. 2014;58(12):7331–7339. doi:10.1128/AAC.03510-14
  • Ram K, Sheikh S, Bhati RK, Tripathi CD, Suri JC, Meshram GG. Steady-state pharmacokinetic and pharmacodynamic profiling of colistin in critically ill patients with multi-drug–resistant gram-negative bacterial infections, along with differences in clinical, microbiological and safety outcome. Basic Clin Pharmacol Toxicol. 2021;128(1):128–140. doi:10.1111/bcpt.13482
  • Bergen PJ, Li J, Nation RL. Dosing of colistin – back to basic PK/PD. Curr Opin Pharmacol. 2011;11:464–469. doi:10.1016/j.coph.2011.07.004
  • Lin YW, Zhou QT, Cheah SE, et al. Pharmacokinetics/pharmacodynamics of pulmonary delivery of colistin against Pseudomonas aeruginosa in a mouse lung infection model. Antimicrob Agents Chemother. 2017;61(3):e02025. doi:10.1128/AAC.02025-16
  • Lin YW, Zhou QT, Hu Y, et al. Pulmonary pharmacokinetics of colistin following administration of dry powder aerosols in rats. Antimicrob Agents Chemother. 2017;61(11):e00973. doi:10.1128/AAC.00973-17
  • Tewes F, Brillault J, Gregoire N, et al. Comparison between colistin sulfate dry powder and solution for pulmonary delivery. Pharmaceutics. 2020;12(6):557. doi:10.3390/pharmaceutics12060557
  • Athanassa ZE, Markantonis SL, Fousteri MZF, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012;38:1779–1786. doi:10.1007/s00134-012-2628-7
  • Ratjen F, Rietschel E, Kasel D, et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;57(2):306–311. doi:10.1093/jac/dki461
  • Shetty N, Ahn P, Park H, et al. Improved physical stability and aerosolization of inhalable amorphous ciprofloxacin powder formulations by incorporating synergistic colistin. Mol Pharm. 2018;15(9):4004–4020. doi:10.1021/acs.molpharmaceut.8b00445
  • Mangal S, Park H, Zeng L, et al. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm. 2018;548(1):443–453. doi:10.1016/j.ijpharm.2018.07.010
  • Dubashynskaya NV, Skorik YA. Polymyxin delivery systems: recent advances and challenges. Pharmaceuticals. 2020;13(5):83. doi:10.3390/ph13050083
  • Gurjar M. Colistin for lung infection: an update. J Intensive Care. 2015;3(1):3. doi:10.1186/s40560-015-0072-9
  • El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9:868–885. doi:10.1080/22221751.2020.1754133
  • Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An update of mobile colistin resistance in non-fermentative gram-negative bacilli. Front Cell Infect Microbiol. 2022;12:882236. doi:10.3389/fcimb.2022.882236
  • Bonyadi P, Saleh NT, Dehghani M, Yamini M, Amini K. Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: a systematic review and meta-analysis. Microb Pathog. 2022;165:105461. doi:10.1016/j.micpath.2022.105461
  • Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–596. doi:10.1128/CMR.00064-16
  • Band VI, Satola SW, Smith RD, et al. Colistin heteroresistance is largely undetected among carbapenem-resistant enterobacterales in the United States. mBio. 2021;12(1):e028810. doi:10.1128/mBio.02881-20
  • Liu -Y-Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi:10.1016/S1473-3099(15)00424-7
  • Pino G, Conterno G, Colongo PG. Clinical observations on the activity os aerosol colimycin and of endobronchial instillations of colomycin in patients with pulmonary suppurations. Minerva Med. 1963;54:2117–2122.
  • Pines A, Raafat H, Siddiqui GM, Greenfield JS. Treatment of severe pseudomonas infections of the bronchi. Br Med J. 1970;1(5697):663–665. doi:10.1136/bmj.1.5697.663
  • Montero M, Horcajada JP, Sorlí L, et al. Effectiveness and safety of colistin for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. Infection. 2009;37(5):461–465. doi:10.1007/s15010-009-8342-x
  • Steinfort DP, Steinfort C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J. 2007;37(7):495–498. doi:10.1111/j.1445-5994.2007.01404.x
  • Dhar R, Anwar GA, Bourke SC, et al. Efficacy of nebulised colomycin in patients with non-cystic fibrosis bronchiectasis colonised with Pseudomonas aeruginosa. Thorax. 2010;65(6):553. doi:10.1136/thx.2008.112284
  • Berlana D, Llop JM, Manresa F, Jódar R. Outpatient treatment of Pseudomonas aeruginosa bronchial colonization with long-term inhaled colistin, tobramycin, or both in adults without cystic fibrosis. Pharmacotherapy. 2011;31(2):146–157. doi:10.1592/phco.31.2.146
  • Blanco-Aparicio M, Saleta Canosa JL, Valiño López P, Martín Egaña MT, Vidal García I, Montero Martínez C. Eradication of Pseudomonas aeruginosa with inhaled colistin in adults with non-cystic fibrosis bronchiectasis. Chron Respir Dis. 2019;16:1479973119872513. doi:10.1177/1479973119872513
  • López-Gil Otero MM, Romero-Ventosa EY, Feijoo-Meléndez D, Casanova-Martínez C, Otero-Millán L, Piñeiro-Corrales G. Experience with nebulised colistin in patients with non-cystic fibrosis bronchiectasis colonised with Pseudomonas aeruginosa. Rev Esp Quimioter. 2019;32(3):217–223. doi:10.1056/NEJMra012519
  • Martínez-García MA, Olveira C, Máiz L, et al. Bronchiectasis: a complex, heterogeneous disease. Arch Bronconeumol. 2019;55(8):427–433. doi:10.1016/j.arbres.2019.02.024
  • Villar-‘Álvarez F, de la Rosa-Carrillo D, Fariñas-Guerrero F, Jiménez-Ruiz CA. Immunosenescence, immune fitness and vaccination schedule in the adult respiratory patient. Open Respir Arch. 2022;4(3):100181. doi:10.1016/j.opresp.2022.100181
  • Tabernero Huguet E, Gil Alaña P, Alkiza Basañez R, Hernández Gil A, Garros Garay J, Artola Igarza JL. Inhaled colistin in elderly patients with non-cystic fibrosis bronchiectasis and chronic Pseudomonas aeruginosa bronchial infection. Rev Esp Geriatr Gerontol. 2015;50(3):111–115. doi:10.1016/j.regg.2014.09.005
  • Martinez-Garcia MA, Miravitlles M. Bronchiectasis in COPD patients: more than a comorbidity? Int J Chron Obstruct Pulmon Dis. 2017;12:1401–1411. doi:10.2147/COPD.S132961
  • Bruguera-Avila N, Marin A, Garcia-Olive I, et al. Effectiveness of treatment with nebulized colistin in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2909–2915. doi:10.2147/COPD.S138428
  • Bruguera-Avila N, Garcia-Olive I, Marin A, et al. Microbiological progress in patients with bronchial infection with Pseudomonas aeruginosa treated with nebulised colistin. Respiration. 2019;97(6):501–507. doi:10.1159/000495069
  • Montón C, Prina E, Pomares X, et al. Nebulized colistin and continuous cyclic azithromycin in severe COPD patients with chronic bronchial infection due to Pseudomonas aeruginosa: a retrospective cohort study. Int J Chron Obstruct Pulmon Dis. 2019;14:2365–2373. doi:10.2147/COPD.S209513
  • de la Rosa Carrillo D, Martínez-García MÁ, Barreiro E, et al. Effectiveness and safety of inhaled antibiotics in patients with chronic obstructive pulmonary disease. A multicentre observational study. Arch Bronconeumol. 2022;58(1):11–21. doi:10.1016/j.arbres.2021.03.009
  • de la Rosa Carrillo D, López-Campos JL, Alcázar Navarrete B, et al. Consensus document on the diagnosis and treatment of chronic bronchial infection in chronic obstructive pulmonary disease. Arch Bronconeumol. 2020;56(10):651–664. doi:10.1016/j.arbres.2020.04.023
  • Martinez-Garcia MA, Miravitlles M. The impact of chronic bronchial infection in COPD: a proposal for management. Int J Chron Obstruct Pulmon Dis. 2022;17:621–630. doi:10.2147/COPD.S357491
  • Martínez-García MÁ, Oscullo G, Barreiro E, et al. Inhaled dry powder antibiotics in patients with non-cystic fibrosis bronchiectasis: efficacy and safety in a real-life study. J Clin Med. 2020;9(7):2317. doi:10.3390/jcm9072317
  • Xu F, He LL, Che LQ, et al. Aerosolized antibiotics for ventilator-associated pneumonia: a pairwise and Bayesian network meta-analysis. Crit Care. 2018;22(1):301. doi:10.1186/s13054-018-2106-x
  • Cui HM, Lin X, Liu YY, Shen YH. Comparison of different colistin regimens for the treatment of pneumonia caused by multidrug-resistant microorganisms: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(16):5275–5292. doi:10.26355/eurrev_202108_26549
  • Elborn JS, Vataire AL, Fukushima A, et al. Comparison of inhaled antibiotics for the treatment of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: systematic literature review and network meta-analysis. Clin Ther. 2016;38(10):2204–2226. doi:10.1016/j.clinthera.2016.08.014
  • Vardaka A, Mavroudis AD, Georgiou M, Falagas ME. Intravenous plus inhaled versus intravenous colistin monotherapy for lower respiratory tract infections: a systematic review and meta-analysis. J Infect. 2018;76(4):321–327. doi:10.1016/j.jinf.2018.02.002
  • Haworth CS, Foweraker JE, Wilkinson P, Kenyon RF, Bilton D. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189(8):975–982. doi:10.1164/rccm.201312-2208OC
  • Hoon ME, Gallagher CG, Govan JRW. A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. Eur Respir J. 2002;20(3):658–664. doi:10.1183/09031936.02.00248102
  • Martinez-García MA, Villa C, Dobarganes Y, et al. RIBRON: the Spanish online bronchiectasis registry. characterization of the first 1912 patients. Arch Bronconeumol. 2021;57(1):28–35. doi:10.1016/j.arbres.2019.12.021
  • Prados C, Maiz L, Zamarron E, Alvarez-Sala R. Are inhalation devices important in antibiotic treatment? Arch Bronconeumol. 2020;56(12):771–772. doi:10.1016/j.arbr.2019.12.015
  • De Soyza A, Aksamit T, Bandel TJ, et al. RESPIRE 1: a Phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018;51(1):1702052. doi:10.1183/13993003.02052-2017
  • Aksamit T, De Soyza A, Bandel TJ, et al. RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018;51(1):1702053. doi:10.1183/13993003.02053-2017
  • Serisier DJ, Bilton D, De Soyza A, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax. 2013;68(9):812–817. doi:10.1136/thoraxjnl-2013-203207
  • Haworth CS, Bilton D, Chalmers JD, et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med. 2019;7(3):213–226. doi:10.1016/S2213-2600(18)30427-2
  • Elborn JS, Blasi F, Haworth CS, et al. Bronchiectasis and inhaled tobramycin: a literature review. Respir Med. 2022;192:106728. doi:10.1016/j.rmed.2021.106728
  • Barker AF, O’Donnell AE, Flume P, et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir Med. 2014;2(9):738–749. doi:10.1016/S2213-2600(14)70165-1
  • Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J. 2014;44(2):382–393. doi:10.1183/09031936.00018414
  • Laska IF, Crichton ML, Shoemark A, Chalmers JD. The efficacy and safety of inhaled antibiotics for the treatment of bronchiectasis in adults: a systematic review and meta-analysis. Lancet Respir Med. 2019;7(10):855–869. doi:10.1016/S2213-2600(19)30185-7
  • Chen CL, Huang Y, Yuan JJ, et al. The roles of bacteria and viruses in Bronchiectasis exacerbation: a prospective study. Arch Bronconeumol. 2020;56(10):621–629. doi:10.1016/j.arbres.2019.12.010
  • Monsó E. Look at the wood and not at the tree: the microbiome in chronic obstructive lung disease and cystic fibrosis. Arch Bronconeumol. 2020;56(1):5–6. doi:10.1016/j.arbres.2019.04.017
  • Abo-Leyah H, Chalmers JD. Managing and preventing exacerbation of bronchiectasis. Curr Opin Infect Dis. 2020;33(2):189–196. doi:10.1097/QCO.0000000000000628
  • Posadas T, Oscullo G, Zaldivar E, et al. C-reactive protein concentration in steady-state Bronchiectasis: prognostic value of future severe exacerbations. data from the Spanish registry of bronchiectasis (RIBRON). Arch Bronconeumol. 2021;57(1):21–27. doi:10.1016/j.arbr.2019.12.022
  • Haworth CS, Shteinberg M, Winthrop KL, et al. RCT abstract - the efficacy and safety of colistimethate sodium delivered via the I-neb in bronchiectasis: the PROMIS-I randomized controlled trial. Eur Respir J. 2021;58(Suppl. 65):RCT4267.
  • National Library of Medicine (US). Trial in Non-cystic Fibrosis Bronchiectasis Patients With Chronic Lung Infections Treated With Colistimethate Sodium (PROMIS II)); [Feb 3, 2006; cited Jul 19, 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT03460704. Accessed July 19, 2022.
  • Falciani C, Zevolini F, Brunetti J, et al. Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int J Nanomedicine. 2020;15:1117–1128. doi:10.2147/IJN.S218966
  • Yu S, Pu X, Ahmed MU, et al. Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int J Pharm. 2021;610:121160. doi:10.1016/j.ijpharm.2021.121160
  • Chang AB, Bell SC, Torzillo PJ, et al. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand thoracic society of Australia and New Zealand guidelines. Med J Aust. 2015;202(3):130. doi:10.5694/mjac14.00287
  • Al-Jahdali H, Alshimemeri A, Mobeireek A, et al. The Saudi thoracic society guidelines for diagnosis and management of noncystic fibrosis bronchiectasis. Ann Thorac Med. 2017;12(3):135–161. doi:10.4103/atm.ATM_171_17
  • Pereira MC, Athanazio RA, Dalcin PTR, et al. Brazilian consensus on non-cystic fibrosis bronchiectasis. J Bras Pneumol. 2019;45(4):e20190122. doi:10.1590/1806-3713/e20190122