317
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Emerging Treatment Options for Acute Bacterial Skin and Skin Structure Infections and Bloodstream Infections Caused by Staphylococcus aureus: A Comprehensive Review of the Evidence

, , , , , ORCID Icon, & show all
Pages 2137-2157 | Published online: 22 Apr 2022

References

  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53–59. doi:10.1086/345476
  • van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25(2):362–386. doi:10.1128/CMR.05022-11
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–1301. doi:10.1017/ice.2016.174
  • Bassetti M, Labate L, Melchio M, et al. Current pharmacotherapy for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Expert Opin Pharmacother. 2021;4:1–15.
  • Wolkewitz M, Frank U, Philips G, Schumacher M, Davey P, Group BS. Mortality associated with in-hospital bacteraemia caused by Staphylococcus aureus: a multistate analysis with follow-up beyond hospital discharge. J Antimicrob Chemother. 2011;66(2):381–386. doi:10.1093/jac/dkq424
  • Holubar M, Meng L, Alegria W, Deresinski S. Bacteremia due to methicillin-resistant staphylococcus aureus: an update on new therapeutic approaches. Infect Dis Clin North Am. 2020;34(4):849–861. doi:10.1016/j.idc.2020.04.003
  • Giannella M, Bartoletti M, Gatti M, Viale P. Advances in the therapy of bacterial bloodstream infections. Clin Microbiol Infect. 2020;26(2):158–167. doi:10.1016/j.cmi.2019.11.001
  • David MZ, Daum RS. Treatment of Staphylococcus aureus infections. Curr Top Microbiol Immunol. 2017;409:325–383. doi:10.1007/82_2017_42
  • Russo A, Concia E, Cristini F, et al. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin Microbiol Infect. 2016;22(Suppl 2):S27–36. doi:10.1016/S1198-743X(16)30095-7
  • Davis JS, Petersiel N, Tong SYC. How I manage a patient with MRSA bacteraemia. Clin Microbiol Infect. 2022;28(2):190–194. doi:10.1016/j.cmi.2021.10.014
  • Bassetti M, Trecarichi EM, Mesini A, et al. Risk factors and mortality of healthcare-associated and community-acquired Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2012;18(9):862–869. doi:10.1111/j.1469-0691.2011.03679.x
  • Giacobbe DR, Labate L, Vena A, Bassetti M. Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Curr Opin Infect Dis. 2021;34(2):109–117. doi:10.1097/QCO.0000000000000708
  • Ray GT, Suaya JA, Baxter R. Trends and characteristics of culture-confirmed Staphylococcus aureus infections in a large U.S. integrated health care organization. J Clin Microbiol. 2012;50(6):1950–1957. doi:10.1128/JCM.00134-12
  • Ray GT, Suaya JA, Baxter R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study. BMC Infect Dis. 2013;13:252. doi:10.1186/1471-2334-13-252
  • Esposito S, Bassetti M, Borre S, et al. Diagnosis and management of skin and soft-tissue infections (SSTI): a literature review and consensus statement on behalf of the Italian Society of Infectious Diseases and International Society of Chemotherapy. J Chemother. 2011;23(5):251–262. doi:10.1179/joc.2011.23.5.251
  • Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014;59(2):147–159. doi:10.1093/cid/ciu444
  • Golan Y. Current treatment options for acute skin and skin-structure infections. Clin Infect Dis. 2019;68(Suppl 3):S206–S212. doi:10.1093/cid/ciz004
  • Pollack CV Jr, Amin A, Ford WT Jr, et al. Acute bacterial skin and skin structure infections (ABSSSI): practice guidelines for management and care transitions in the emergency department and hospital. J Emerg Med. 2015;48(4):508–519. doi:10.1016/j.jemermed.2014.12.001
  • Ray GT, Suaya JA, Baxter R. Microbiology of skin and soft tissue infections in the age of community-acquired methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2013;76(1):24–30. doi:10.1016/j.diagmicrobio.2013.02.020
  • Talan DA, Krishnadasan A, Gorwitz RJ, et al. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clin Infect Dis. 2011;53(2):144–149. doi:10.1093/cid/cir308
  • Bassetti M, Nicco E, Mikulska M. Why is community-associated MRSA spreading across the world and how will it change clinical practice? Int J Antimicrob Agents. 2009;34(Suppl 1):S15–19. doi:10.1016/S0924-8579(09)70544-8
  • Miller LG, Perdreau-Remington F, Rieg G, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352(14):1445–1453. doi:10.1056/NEJMoa042683
  • Saeed K, Gould I, Esposito S, et al. Panton-Valentine leukocidin-positive Staphylococcus aureus: a position statement from the International Society of Chemotherapy. Int J Antimicrob Agents. 2018;51(1):16–25. doi:10.1016/j.ijantimicag.2017.11.002
  • Bassetti M, Peghin M, Castaldo N, Giacobbe DR. The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin Drug Saf. 2019;18(8):635–650. doi:10.1080/14740338.2019.1621288
  • Bassetti M, Magnasco L, Del Puente F, Giacobbe DR. Role of new antibiotics in the treatment of acute bacterial skin and skin-structure infections. Curr Opin Infect Dis. 2020;33(2):110–120. doi:10.1097/QCO.0000000000000631
  • Raff AB, Kroshinsky D. Therapy for Cellulitis. JAMA. 2016;316(19):2047. doi:10.1001/jama.2016.15613
  • Pulido-Cejudo A, Guzman-Gutierrez M, Jalife-Montano A, et al. Management of acute bacterial skin and skin structure infections with a focus on patients at high risk of treatment failure. Ther Adv Infect Dis. 2017;4(5):143–161. doi:10.1177/2049936117723228
  • Sousa-Pinto B, Blumenthal KG, Courtney L, Mancini CM, Jeffres MN. Assessment of the frequency of dual allergy to penicillins and cefazolin: a systematic review and meta-analysis. JAMA Surg. 2021;156(4):e210021. doi:10.1001/jamasurg.2021.0021
  • Daum RS, Miller LG, Immergluck L, et al. A placebo-controlled trial of antibiotics for smaller skin abscesses. N Engl J Med. 2017;376(26):2545–2555. doi:10.1056/NEJMoa1607033
  • Miller LG, Daum RS, Creech CB, et al. Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections. N Engl J Med. 2015;372(12):1093–1103. doi:10.1056/NEJMoa1403789
  • Schmitz GR, Bruner D, Pitotti R, et al. Randomized controlled trial of trimethoprim-sulfamethoxazole for uncomplicated skin abscesses in patients at risk for community-associated methicillin-resistant Staphylococcus aureus infection. Ann Emerg Med. 2010;56(3):283–287. doi:10.1016/j.annemergmed.2010.03.002
  • Talan DA, Lovecchio F, Abrahamian FM, et al. A randomized trial of clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated wound infection. Clin Infect Dis. 2016;62(12):1505–1513. doi:10.1093/cid/ciw177
  • Talan DA, Mower WR, Krishnadasan A, et al. Trimethoprim-sulfamethoxazole versus placebo for uncomplicated skin abscess. N Engl J Med. 2016;374(9):823–832. doi:10.1056/NEJMoa1507476
  • Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med. 2014;370(23):2169–2179. doi:10.1056/NEJMoa1310480
  • Breedt J, Teras J, Gardovskis J, et al. Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a double-blind phase 3 comparison study with vancomycin-aztreonam. Antimicrob Agents Chemother. 2005;49(11):4658–4666. doi:10.1128/AAC.49.11.4658-4666.2005
  • Corey GR, Good S, Jiang H, et al. Single-dose oritavancin versus 7–10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis. 2015;60(2):254–262. doi:10.1093/cid/ciu778
  • Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370(23):2180–2190. doi:10.1056/NEJMoa1310422
  • Corey GR, Wilcox MH, Talbot GH, et al. CANVAS 1: the first Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(Suppl 4):iv41–51. doi:10.1093/jac/dkq254
  • Dryden M, Zhang Y, Wilson D, Iaconis JP, Gonzalez J, Phase A. III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother. 2016;71(12):3575–3584. doi:10.1093/jac/dkw333
  • Holland TL, O’Riordan W, McManus A, et al. A Phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim versus vancomycin for treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to gram-positive pathogens (REVIVE-2 Study). Antimicrob Agents Chemother. 2018;62(5). doi:10.1128/AAC.02580-17
  • Huang DB, O’Riordan W, Overcash JS, et al. A Phase 3, randomized, double-blind, multicenter study to evaluate the safety and efficacy of intravenous iclaprim vs vancomycin for the treatment of acute bacterial skin and skin structure infections suspected or confirmed to be due to gram-positive pathogens: REVIVE-1. Clin Infect Dis. 2018;66(8):1222–1229. doi:10.1093/cid/cix987
  • Itani KM, Dryden MS, Bhattacharyya H, Kunkel MJ, Baruch AM, Weigelt JA. Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2010;199(6):804–816. doi:10.1016/j.amjsurg.2009.08.045
  • Jauregui LE, Babazadeh S, Seltzer E, et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis. 2005;41(10):1407–1415. doi:10.1086/497271
  • Kauf TL, McKinnon P, Corey GR, et al. An open-label, pragmatic, randomized controlled clinical trial to evaluate the comparative effectiveness of daptomycin versus vancomycin for the treatment of complicated skin and skin structure infection. BMC Infect Dis. 2015;15:503. doi:10.1186/s12879-015-1261-9
  • Lv X, Alder J, Li L, et al. Efficacy and safety of tedizolid phosphate versus linezolid in a randomized Phase 3 trial in patients with acute bacterial skin and skin structure infection. Antimicrob Agents Chemother. 2019;63(7). doi:10.1128/AAC.02252-18
  • Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14(8):696–705. doi:10.1016/S1473-3099(14)70737-6
  • Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis. 2008;46(5):647–655. doi:10.1086/526527
  • Noel GJ, Strauss RS, Amsler K, Heep M, Pypstra R, Solomkin JS. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother. 2008;52(1):37–44. doi:10.1128/AAC.00551-07
  • O’Riordan W, Cardenas C, Shin E, et al. Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial. Lancet Infect Dis. 2019;19(10):1080–1090. doi:10.1016/S1473-3099(19)30275-0
  • O’Riordan W, Green S, Overcash JS, et al. Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med. 2019;380(6):528–538. doi:10.1056/NEJMoa1800170
  • O’Riordan W, McManus A, Teras J, et al. A comparison of the efficacy and safety of intravenous followed by oral delafloxacin with vancomycin plus aztreonam for the treatment of acute bacterial skin and skin structure infections: a Phase 3, multinational, double-blind, randomized study. Clin Infect Dis. 2018;67(5):657–666. doi:10.1093/cid/ciy165
  • Overcash JS, Kim C, Keech R, et al. Ceftobiprole compared with vancomycin plus aztreonam in the treatment of acute bacterial skin and skin structure infections: results of a Phase 3, randomized, double-blind trial (TARGET). Clin Infect Dis. 2021;73(7):e1507–e1517. doi:10.1093/cid/ciaa974
  • Prince WT, Ivezic-Schoenfeld Z, Lell C, et al. Phase II clinical study of BC-3781, a pleuromutilin antibiotic, in treatment of patients with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2013;57(5):2087–2094. doi:10.1128/AAC.02106-12
  • Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA. 2013;309(6):559–569. doi:10.1001/jama.2013.241
  • Pullman J, Gardovskis J, Farley B, et al. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a Phase 3, double-blind, randomized study. J Antimicrob Chemother. 2017;72(12):3471–3480. doi:10.1093/jac/dkx329
  • Sacchidanand S, Penn RL, Embil JM, et al. Efficacy and safety of tigecycline monotherapy compared with vancomycin plus aztreonam in patients with complicated skin and skin structure infections: results from a phase 3, randomized, double-blind trial. Int J Infect Dis. 2005;9(5):251–261. doi:10.1016/j.ijid.2005.05.003
  • Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2002;34(11):1481–1490. doi:10.1086/340353
  • Stryjewski ME, Graham DR, Wilson SE, et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008;46(11):1683–1693. doi:10.1086/587896
  • Weigelt J, Itani K, Stevens D, et al. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49(6):2260–2266. doi:10.1128/AAC.49.6.2260-2266.2005
  • Wilcox M, Nathwani D, Dryden M. Linezolid compared with teicoplanin for the treatment of suspected or proven Gram-positive infections. J Antimicrob Chemother. 2004;53(2):335–344. doi:10.1093/jac/dkh088
  • Wilcox MH, Corey GR, Talbot GH, et al. CANVAS 2: the second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65 Suppl 4:iv53–iv65. doi:10.1093/jac/dkq255
  • Wilcox MH, Tack KJ, Bouza E, et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis. 2009;48(2):203–212. doi:10.1086/595686
  • Bassetti M, Labate L, Vena A, Giacobbe DR. Role or oritavancin and dalbavancin in acute bacterial skin and skin structure infections and other potential indications. Curr Opin Infect Dis. 2021;34(2):96–108. doi:10.1097/QCO.0000000000000714
  • Bassetti M, Castaldo N, Carnelutti A, Peghin M, Giacobbe DR. Tedizolid phosphate for the treatment of acute bacterial skin and skin-structure infections: an evidence-based review of its place in therapy. Core Evid. 2019;14:31–40. doi:10.2147/CE.S187499
  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi:10.1128/CMR.00134-14
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–317. doi:10.1086/421946
  • Bai AD, Showler A, Burry L, et al. Comparative effectiveness of cefazolin versus cloxacillin as definitive antibiotic therapy for MSSA bacteraemia: results from a large multicentre cohort study. J Antimicrob Chemother. 2015;70(5):1539–1546. doi:10.1093/jac/dku560
  • Beganovic M, Cusumano JA, Lopes V, LaPlante KL, Caffrey AR. Comparative effectiveness of exclusive exposure to nafcillin or oxacillin, cefazolin, piperacillin/ tazobactam, and fluoroquinolones among a national cohort of veterans with methicillin-susceptible staphylococcus aureus bloodstream infection. Open Forum Infect Dis. 2019;6(7):ofz270. doi:10.1093/ofid/ofz270
  • Bidell MR, Patel N, O’Donnell JN. Optimal treatment of MSSA bacteraemias: a meta-analysis of cefazolin versus antistaphylococcal penicillins. J Antimicrob Chemother. 2018;73(10):2643–2651. doi:10.1093/jac/dky259
  • Burrelli CC, Broadbent EK, Margulis A, et al. Does the beta-lactam matter? Nafcillin versus cefazolin for methicillin-susceptible staphylococcus aureus bloodstream infections. Chemotherapy. 2018;63(6):345–351. doi:10.1159/000499033
  • Davis JS, Turnidge J, Tong S. A large retrospective cohort study of cefazolin compared with flucloxacillin for methicillin-susceptible Staphylococcus aureus bacteraemia. Int J Antimicrob Agents. 2018;52(2):297–300. doi:10.1016/j.ijantimicag.2018.02.013
  • Lee BJ, Wang SK, Constantino-Corpuz JK, et al. Cefazolin vs. anti-staphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections in acutely ill adult patients: results of a systematic review and meta-analysis. Int J Antimicrob Agents. 2019;53(3):225–233. doi:10.1016/j.ijantimicag.2018.11.013
  • Lee S, Song KH, Jung SI, et al. Comparative outcomes of cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bacteraemia: a prospective multicentre cohort study in Korea. Clin Microbiol Infect. 2018;24(2):152–158. doi:10.1016/j.cmi.2017.07.001
  • Lefevre B, Hoen B, Goehringer F, et al. Antistaphylococcal penicillins vs. cefazolin in the treatment of methicillin-susceptible Staphylococcus aureus infective endocarditis: a quasi-experimental monocentre study. Eur J Clin Microbiol Infect Dis. 2021;40(12):2605–2616. doi:10.1007/s10096-021-04313-3
  • Li J, Echevarria KL, Hughes DW, Cadena JA, Bowling JE, Lewis JS 2nd. Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(9):5117–5124. doi:10.1128/AAC.02800-14
  • McDanel JS, Roghmann MC, Perencevich EN, et al. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible staphylococcus aureus infections complicated by bacteremia: a Nationwide Cohort Study. Clin Infect Dis. 2017;65(1):100–106. doi:10.1093/cid/cix287
  • Miller MA, Fish DN, Barber GR, et al. A comparison of safety and outcomes with cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bloodstream infections. J Microbiol Immunol Infect. 2020;53(2):321–327. doi:10.1016/j.jmii.2018.07.006
  • Pollett S, Baxi SM, Rutherford GW, Doernberg SB, Bacchetti P, Chambers HF. Cefazolin versus nafcillin for methicillin-sensitive staphylococcus aureus bloodstream infection in a California tertiary medical center. Antimicrob Agents Chemother. 2016;60(8):4684–4689. doi:10.1128/AAC.00243-16
  • Rao SN, Rhodes NJ, Lee BJ, et al. Treatment outcomes with cefazolin versus oxacillin for deep-seated methicillin-susceptible Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2015;59(9):5232–5238. doi:10.1128/AAC.04677-14
  • Rindone JP, Mellen CK. Meta-analysis of trials comparing cefazolin to antistaphylococcal penicillins in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia. Br J Clin Pharmacol. 2018;84(6):1258–1266. doi:10.1111/bcp.13554
  • Shi C, Xiao Y, Zhang Q, et al. Efficacy and safety of cefazolin versus antistaphylococcal penicillins for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: a systematic review and meta-analysis. BMC Infect Dis. 2018;18(1):508. doi:10.1186/s12879-018-3418-9
  • Weis S, Kesselmeier M, Davis JS, et al. Cefazolin versus anti-staphylococcal penicillins for the treatment of patients with Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2019;25(7):818–827. doi:10.1016/j.cmi.2019.03.010
  • Burdet C, Loubet P, Le Moing V, et al. Efficacy of cloxacillin versus cefazolin for methicillin-susceptible Staphylococcus aureus bacteraemia (CloCeBa): study protocol for a randomised, controlled, non-inferiority trial. BMJ Open. 2018;8(8):e023151. doi:10.1136/bmjopen-2018-023151
  • Miller WR, Seas C, Carvajal LP, et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible staphylococcus aureus bacteremia. Open Forum Infect Dis. 2018;5(6):ofy123. doi:10.1093/ofid/ofy123
  • Henderson A, Harris P, Hartel G, et al. Benzylpenicillin versus flucloxacillin for penicillin-susceptible Staphylococcus aureus bloodstream infections from a large retrospective cohort study. Int J Antimicrob Agents. 2019;54(4):491–495. doi:10.1016/j.ijantimicag.2019.05.020
  • Moriyama Y, Ishikane M, Mezaki K, Ohmagari N. Comparison of penicillins (penicillin G and ampicillin) and cefazolin as a definitive therapy against penicillin-susceptible Staphylococcus aureus (PSSA) bacteremia in Japan: a retrospective cohort study. J Infect Chemother. 2020;26(4):358–362. doi:10.1016/j.jiac.2019.10.023
  • Nissen JL, Skov R, Knudsen JD, et al. Effectiveness of penicillin, dicloxacillin and cefuroxime for penicillin-susceptible Staphylococcus aureus bacteraemia: a retrospective, propensity-score-adjusted case-control and cohort analysis. J Antimicrob Chemother. 2013;68(8):1894–1900. doi:10.1093/jac/dkt108
  • Reynolds G, Crawford S, Cuenca J, Ghosh N, Newton P. Penicillin versus anti-staphylococcal beta-lactams for penicillin-susceptible Staphylococcus aureus blood stream infections: a retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2022;41(1):147–151. doi:10.1007/s10096-021-04330-2
  • Fowler VG Jr, Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–665. doi:10.1056/NEJMoa053783
  • Agnello S, Wardlow LC, Reed E, Smith JM, Coe K, Day SR. Clinical outcomes of daptomycin versus anti-staphylococcal beta-lactams in definitive treatment of methicillin-susceptible staphylococcus aureus bloodstream infections. Int J Antimicrob Agents. 2021;58(2):106363. doi:10.1016/j.ijantimicag.2021.106363
  • Kim SH, Kim KH, Kim HB, et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2008;52(1):192–197. doi:10.1128/AAC.00700-07
  • McDanel JS, Perencevich EN, Diekema DJ, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis. 2015;61(3):361–367. doi:10.1093/cid/civ308
  • Schweizer ML, Furuno JP, Harris AD, et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11:279. doi:10.1186/1471-2334-11-279
  • Stryjewski ME, Szczech LA, Benjamin DK Jr, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44(2):190–196. doi:10.1086/510386
  • Cheng MP, Lawandi A, Butler-Laporte G, De L’etoile-morel S, Paquette K, Lee TC. Adjunctive daptomycin in the treatment of methicillin-susceptible staphylococcus aureus bacteremia: a Randomized, Controlled Trial. Clin Infect Dis. 2021;72(9):e196–e203. doi:10.1093/cid/ciaa1000
  • Thwaites GE, Scarborough M, Szubert A, et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10121):668–678. doi:10.1016/S0140-6736(17)32456-X
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55. doi:10.1093/cid/ciq146
  • Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist. 2021;3(1):dlaa114. doi:10.1093/jacamr/dlaa114
  • Maraolo AE, Giaccone A, Gentile I, Saracino A, Bavaro DF. Daptomycin versus vancomycin for the treatment of methicillin-resistant staphylococcus aureus bloodstream infection with or without endocarditis: a systematic review and meta-analysis. Antibiotics. 2021;10(8).
  • Barlow A, Heil EL, Claeys KC. Using an ordinal approach to compare outcomes between vancomycin versus ceftaroline or daptomycin in MRSA bloodstream infection. Infect Dis Ther. 2021;10(1):605–612. doi:10.1007/s40121-021-00401-1
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2020;71(6):1361–1364. doi:10.1093/cid/ciaa303
  • Cavalcanti AB, Goncalves AR, Almeida CS, Bugano DD, Silva E, Teicoplanin versus vancomycin for proven or suspected infection. Cochrane Database Syst Rev. 2010;6:CD007022. doi:10.1002/14651858.CD007022.pub2
  • Bassetti M, Baguneid M, Bouza E, Dryden M, Nathwani D, Wilcox M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect. 2014;20(Suppl 4):3–18. doi:10.1111/1469-0691.12463
  • Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56(5):923–929. doi:10.1093/jac/dki355
  • Yeager SD, Oliver JE, Shorman MA, Wright LR, Veve MP. Comparison of linezolid step-down therapy to standard parenteral therapy in methicillin-resistant Staphylococcus aureus bloodstream infections. Int J Antimicrob Agents. 2021;57(5):106329. doi:10.1016/j.ijantimicag.2021.106329
  • Giacobbe DR, De Rosa FG, Del Bono V, et al. Ceftobiprole: drug evaluation and place in therapy. Expert Rev Anti Infect Ther. 2019;17(9):689–698. doi:10.1080/14787210.2019.1667229
  • Lupia T, Corcione S, Mornese Pinna S, De Rosa FG. New cephalosporins for the treatment of pneumonia in internal medicine wards. J Thorac Dis. 2020;12(7):3747–3763. doi:10.21037/jtd-20-417
  • Vazquez JA, Maggiore CR, Cole P, Smith A, Jandourek A, Friedland HD. Ceftaroline fosamil for the treatment of staphylococcus aureus bacteremia secondary to acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. Infect Dis Clin Pract. 2015;23(1):39–43. doi:10.1097/IPC.0000000000000191
  • Soriano A, Morata L. Ceftobripole: experience in staphylococcal bacteremia. Revista espanola de quimioterapia. 2019;32(Suppl 3):24–28.
  • Durante-Mangoni E, Andini R, Mazza MC, et al. Real-life experience with ceftobiprole in a tertiary-care hospital. J Glob Antimicrob Resist. 2020;22:386–390. doi:10.1016/j.jgar.2020.03.010
  • Hamed K, Engelhardt M, Jones ME, et al. Ceftobiprole versus daptomycin in Staphylococcus aureus bacteremia: a novel protocol for a double-blind, Phase III trial. Future Microbiol. 2020;15:35–48. doi:10.2217/fmb-2019-0332
  • Ahmad O, Crawford TN, Myint T. Comparing the outcomes of ceftaroline plus vancomycin or daptomycin combination therapy versus monotherapy in adults with complicated and prolonged methicillin-resistant staphylococcus aureus bacteremia initially treated with supplemental ceftaroline. Infect Dis Ther. 2020;9(1):77–87. doi:10.1007/s40121-019-00277-2
  • Gritsenko D, Fedorenko M, Ruhe JJ, Altshuler J. Combination therapy with vancomycin and ceftaroline for refractory methicillin-resistant staphylococcus aureus bacteremia: a case series. Clin Ther. 2017;39(1):212–218. doi:10.1016/j.clinthera.2016.12.005
  • Hornak JP, Anjum S, Reynoso D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Ther Adv Infect Dis. 2019;6:2049936119886504. doi:10.1177/2049936119886504
  • Johnson TM, Molina KC, Miller MA, Kiser TH, Huang M, Mueller SW. Combination ceftaroline and daptomycin salvage therapy for complicated methicillin-resistant Staphylococcus aureus bacteraemia compared with standard of care. Int J Antimicrob Agents. 2021;57(4):106310. doi:10.1016/j.ijantimicag.2021.106310
  • McCreary EK, Kullar R, Geriak M, et al. Multicenter cohort of patients with methicillin-resistant staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared with other MRSA treatments. Open Forum Infect Dis. 2020;7(1):ofz538. doi:10.1093/ofid/ofz538
  • Molina KC, Morrisette T, Miller MA, Huang V, Fish DN. The emerging role of beta-lactams in the treatment of methicillin-resistant staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2020;64(7). doi:10.1128/AAC.00468-20
  • Morrisette T, Lagnf AM, Alosaimy S, Rybak MJ. A comparison of daptomycin alone and in combination with ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bacteremia complicated by septic pulmonary emboli. Eur J Clin Microbiol Infect Dis. 2020;39(11):2199–2203. doi:10.1007/s10096-020-03941-5
  • Sakoulas G, Moise PA, Casapao AM, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36(10):1317–1333. doi:10.1016/j.clinthera.2014.05.061
  • Corcione S, Lupia T, De Rosa FG. Novel cephalosporins in septic subjects and severe infections: present findings and future perspective. Front Med. 2021;8:617378. doi:10.3389/fmed.2021.617378
  • Dhand A, Bayer AS, Pogliano J, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53(2):158–163. doi:10.1093/cid/cir340
  • Davis JS, Sud A, O’Sullivan MVN, et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant staphylococcus aureus bacteremia: a Pilot Multicenter Randomized Controlled Trial. Clin Infect Dis. 2016;62(2):173–180. doi:10.1093/cid/civ808
  • Tong SYC, Lye DC, Yahav D, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal beta-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a Randomized Clinical Trial. JAMA. 2020;323(6):527–537. doi:10.1001/jama.2020.0103
  • Pujol M, Miro JM, Shaw E, et al. Daptomycin plus fosfomycin versus daptomycin alone for methicillin-resistant staphylococcus aureus bacteremia and endocarditis: a Randomized Clinical Trial. Clin Infect Dis. 2021;72(9):1517–1525. doi:10.1093/cid/ciaa1081
  • Alosaimy S, Sabagha NL, Lagnf AM, et al. Monotherapy with vancomycin or daptomycin versus combination therapy with beta-lactams in the treatment of methicillin-resistant staphylococcus aureus bloodstream infections: a retrospective cohort analysis. Infect Dis Ther. 2020;9(2):325–339. doi:10.1007/s40121-020-00292-8
  • Casapao AM, Jacobs DM, Bowers DR, Beyda ND, Dilworth TJ, Group R-IS. Early administration of adjuvant beta-lactam therapy in combination with vancomycin among patients with methicillin-resistant staphylococcus aureus bloodstream infection: a retrospective, multicenter analysis. Pharmacotherapy. 2017;37(11):1347–1356. doi:10.1002/phar.2034
  • Davis JS, Van Hal S, Tong SY. Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin Respir Crit Care Med. 2015;36(1):3–16. doi:10.1055/s-0034-1396906
  • Jorgensen SCJ, Zasowski EJ, Trinh TD, et al. Daptomycin plus beta-lactam combination therapy for methicillin-resistant staphylococcus aureus bloodstream infections: a Retrospective, Comparative Cohort Study. Clin Infect Dis. 2020;71(1):1–10. doi:10.1093/cid/ciz746
  • Truong J, Veillette JJ, Forland SC. Outcomes of vancomycin plus a beta-lactam versus vancomycin only for treatment of methicillin-resistant staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2018;62(2). doi:10.1128/AAC.01554-17
  • Kale-Pradhan PB, Giuliano C, Jongekrijg A, Rybak MJ. Combination of vancomycin or daptomycin and beta-lactam antibiotics: a meta-analysis. Pharmacotherapy. 2020;40(7):648–658. doi:10.1002/phar.2437
  • Yi YH, Wang JL, Yin WJ, Xu WH. Vancomycin or daptomycin plus a beta-lactam versus vancomycin or daptomycin alone for methicillin-resistant staphylococcus aureus bloodstream infections: a systematic review and meta-analysis. Microb Drug Resist. 2021;27(8):1044–1056. doi:10.1089/mdr.2020.0350
  • Geriak M, Haddad F, Rizvi K, et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2019;63(5). doi:10.1128/AAC.02483-18
  • Kalil AC, Holubar M, Deresinski S, Chambers HF. Is daptomycin plus ceftaroline associated with better clinical outcomes than standard of care monotherapy for Staphylococcus aureus bacteremia? Antimicrob Agents Chemother. 2019;63(11). doi:10.1128/AAC.00900-19
  • Sakoulas G, Geriak M, Haddad F, et al. Is daptomycin plus ceftaroline associated with better clinical outcomes than standard of care monotherapy for Staphylococcus aureus bacteremia?. Antimicrob Agents Chemother. 2019;63(11). doi:10.1128/AAC.01347-19
  • Noviello S, Magnet S, Hawser S, Huang DB. In vitro activity of iclaprim against isolates in Two Phase 3 Clinical Trials (REVIVE-1 and −2) for acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2019;63(4). doi:10.1128/AAC.02239-18
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett. 2003;13(23):4217–4221. doi:10.1016/j.bmcl.2003.07.023
  • Drugs.com. Motif bio announces path forward for iclaprim following receipt of FDA meeting minutes. Available from: https://www.drugs.com/clinical_trials/motif-bio-announces-path-forward-iclaprim-following-receipt-fda-meeting-minutes-18171.html. Accessed January 30, 2022].
  • Falco V, Burgos J, Almirante B. Ceftobiprole medocaril for the treatment of community-acquired pneumonia. Expert Opin Pharmacother. 2018;19(13):1503–1509. doi:10.1080/14656566.2018.1516749
  • Kowalski RP, Romanowski EG, Yates KA, Mah FS. An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J Ocul Pharmacol Ther. 2016;32(1):23–27. doi:10.1089/jop.2015.0098
  • Bassetti M, Del Puente F, Magnasco L, Giacobbe DR. Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus: advances in Phase I and II trials. Expert Opin Investig Drugs. 2020;29(5):495–506. doi:10.1080/13543784.2020.1750595
  • ClinicalTrials.gov. Initial treatment for acute bacterial skin infections (ABSSSI) caused by staphylococcus aureus. Available from: https://clinicaltrials.gov/ct2/show/NCT01211470. Accessed January 30, 2022.
  • ClinicalTrials.gov. Efficacy and safety study of brilacidin to treat serious skin infections. Available from: https://clinicaltrials.gov/ct2/show/NCT02052388. Accessed January 30, 2022.
  • Jorgensen DM, Scott RW, O’Riordan WA, et al. A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin & skin structure infections (ABSSSI). Presented at: 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); April 25–28; 2015; Copenhagen, Denmark.
  • Eraikhuemen N, Julien D, Kelly A, Lindsay T, Lazaridis D. Treatment of community-acquired pneumonia: a focus on lefamulin. Infect Dis Ther. 2021;10(1):149–163. doi:10.1007/s40121-020-00378-3
  • Veve MP, Wagner JL. Lefamulin: review of a promising novel pleuromutilin antibiotic. Pharmacotherapy. 2018;38(9):935–946. doi:10.1002/phar.2166
  • Flamm RK, Rhomberg PR, Kaplan N, Jones RN, Farrell DJ. Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Antimicrob Agents Chemother. 2015;59(5):2583–2587. doi:10.1128/AAC.05119-14
  • Hafkin B, Kaplan N, Murphy B. Efficacy and safety of AFN-1252, the first staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob Agents Chemother. 2015;60(3):1695–1701. doi:10.1128/AAC.01741-15
  • Wittke F, Vincent C, Chen J, et al. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: clinical noninferiority to vancomycin/linezolid. Antimicrob Agents Chemother. 2020;64(10). doi:10.1128/AAC.00250-20
  • CrystalGenomics, Inc. CrystalGenomics reports positive top-line data from phase 2a study of CG400549 in patients with complicated acute bacterial skin and skin structure infections caused by MRSA. Available from: https://www.prnewswire.com/news-releases/crystalgenomics-reports-positive-top-line-data-from-phase-2a-study-of-cg400549-in-patients-with-complicated-acute-bacterial-skin-and-skin-structure-infections-caused-by-mrsa-185870042.html. Accessed January 31, 2022.
  • Covington P, Davenport JM, Andrae D, et al. Randomized, double-blind, Phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob Agents Chemother. 2011;55(12):5790–5797. doi:10.1128/AAC.05044-11
  • Bhagwat SS, McGhee P, Kosowska-Shick K, Patel MV, Appelbaum PC. In vitro activity of the quinolone WCK 771 against recent U.S. hospital and community-acquired Staphylococcus aureus pathogens with various resistance types. Antimicrob Agents Chemother. 2009;53(2):811–813. doi:10.1128/AAC.01150-08
  • Tellis M, Joseph J, Khande H, Bhagwat S, Patel M. In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin- and quinolone-resistant Staphylococcus aureus biofilms. J Med Microbiol. 2019;68(8):1129–1136. doi:10.1099/jmm.0.000999
  • Bhatia A, Mastim M, Shah M, et al. Efficacy and safety of a novel broad-spectrum anti-MRSA agent levonadifloxacin compared with linezolid for acute bacterial skin and skin structure infections: a Phase 3, Open label, Randomized Study. J Assoc Physicians India. 2020;68(8):30–36.
  • Safety and efficacy study of oxazolidinones to treat uncomplicated skin infections. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00646958. Accessed January 31, 2022.
  • MicuRx Pharmaceuticals, Inc. MicuRx pharmaceuticals reports positive top-line results from a US Phase 2 ABSSSI clinical trial of novel antibiotic contezolid acefosamil. Available from: https://www.businesswire.com/news/home/20190909005015/en/. Accessed January 31, 2022.
  • Hoy SM. Contezolid: first approval. Drugs. 2021;81(13):1587–1591. doi:10.1007/s40265-021-01576-0
  • Ma Z, Lynch AS. Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J Med Chem. 2016;59(14):6645–6657. doi:10.1021/acs.jmedchem.6b00485
  • Robertson GT, Bonventre EJ, Doyle TB, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: studies of the mode of action in Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52(7):2313–2323. doi:10.1128/AAC.01649-07
  • Phase 2, double-blind, randomized, multicenter, parallel, controlled study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of TNP-2092 to treat acute bacterial skin and skin structure infection in adults. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03964493. Accessed April 12, 2022.
  • Biedenbach DJ, Bouchillon SK, Hackel M, et al. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother. 2016;60(3):1918–1923. doi:10.1128/AAC.02820-15
  • Flamm RK, Farrell DJ, Rhomberg PR, Scangarella-Oman NE, Sader HS. Gepotidacin (GSK2140944) in vitro activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2017;61(7). doi:10.1128/AAC.00468-17
  • O’Riordan W, Tiffany C, Scangarella-Oman N, et al. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2017;61(6). doi:10.1128/AAC.02095-16
  • Stryjewski ME, Potgieter PD, Li YP, et al. TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012;56(11):5476–5483. doi:10.1128/AAC.00712-12
  • Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage Lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother. 2017;61(7). doi:10.1128/AAC.02666-16
  • Traczewski M, Oh J, Cassino C, Schuch R. In vitro activity of Exebacase (CF-301) against clinical Staphylococcus aureus surveillance isolates from the United States, Europe, and Latin America, 2015–2017. Diagn Microbiol Infect Dis. 2019;95(4):114879. doi:10.1016/j.diagmicrobio.2019.114879
  • Fowler VG Jr, Das AF, Lipka-Diamond J, et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J Clin Invest. 2020;130(7):3750–3760. doi:10.1172/JCI136577
  • A randomized, double-blind, placebo-controlled study of the efficacy and safety of a single dose of exebacase in patients receiving standard-of-care antibiotics for the treatment of Staphylococcus aureus bloodstream infections (Bacteremia), including right-sided infective endocarditis. Available from: https://clinicaltrials.gov/ct2/show/NCT04160468. Accessed February 1, 2022.
  • Jun SY, Jung GM, Yoon SJ, et al. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents. 2013;41(2):156–161. doi:10.1016/j.ijantimicag.2012.10.011
  • A randomized, double-blind, placebo-controlled, multicenter phase iia clinical study to evaluate safety and to explore efficacy of N-Rephasin® SAL200, in patients with persistent Staphylococcus aureus bacteremia. Available from: https://clinicaltrials.gov/ct2/show/NCT03089697. Accessed February 1, 2022.
  • Varshney AK, Kuzmicheva GA, Lin J, et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One. 2018;13(1):e0190537. doi:10.1371/journal.pone.0190537
  • XBiotech, Inc. XBiotech announces top-line results for 514G3 antibody therapy in serious staphylococcus aureus infections. Available from: https://www.globenewswire.com/news-release/2017/04/03/953500/0/en/XBiotech-Announces-Top-Line-Results-for-514G3-Antibody-Therapy-in-Serious-Staphylococcus-aureus-Infections.html. Accessed February 1, 2022.