2,021
Views
18
CrossRef citations to date
0
Altmetric
Review

Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5235-5252 | Published online: 07 Dec 2021

References

  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom; 2016.
  • World Health Organization. World action plan on antimicrobial resistance; 2015.
  • Ademe M, Girma F. Candida auris: from multidrug resistance to pan-resistant strains. Infect Drug Resist. 2020;13:1287–1294. doi:10.2147/IDR.S24986432440165
  • Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(Supp2):S82–S89. doi:10.1086/49940616355321
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi:10.1179/2047773215Y.000000003026343252
  • Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N. Differential drivers of antimicrobial resistance across the world. Acc Chem Res. 2019;52(4):916–924. doi:10.1021/acs.accounts.8b0064330848890
  • Birgand G, Castro-Sánchez E, Hansen S, et al. Comparison of governance approaches for the control of antimicrobial resistance: analysis of three European countries. Antimicrob Resist Infect Control. 2018;7(1):28. doi:10.1186/s13756-018-0321-529468055
  • Munckhof W. Antibiotics for surgical prophylaxis. Aust Prescr. 2005;28:38–40. doi:10.18773/austprescr.2005.030
  • Raymond DP, Kuehnert MJ, Sawyer RG. Preventing antimicrobial-resistant bacterial infections in surgical patients. Surg Infect. 2002;3(4):375–385. doi:10.1089/109629602762539599
  • Strathdee SA, Davies SC, Marcelin JR. Confronting antimicrobial resistance beyond the COVID-19 pandemic and the 2020 US election. Lancet. 2020;396(10257):1050–1053. doi:10.1016/S0140-6736(20)32063-833007218
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-430409683
  • Oldenkamp R, Schultsz C, Mancini E, Cappuccio A. Filling the gaps in the global prevalence map of clinical antimicrobial resistance. Proc Natl Acad Sci USA. 2021;118(1):e2013515118. doi:10.1073/pnas.201351511833372157
  • Sipahi OR. Economics of antibiotic resistance. Expert Rev Anti Infect Ther. 2008;6(4):523–539. doi:10.1586/14787210.6.4.52318662118
  • Hofer U. The cost of antimicrobial resistance. Nat Rev Microbiol. 2019;17(1):3. doi:10.1038/s41579-018-0125-x30467331
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–1208. doi:10.1056/NEJMoa130680124670166
  • Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008;70(Suppl 2):3–10. doi:10.1016/S0195-6701(08)60017-119022115
  • World Health Organization. Protocol for surgical site infection surveillance with a focus on settings with limited resources; 2018.
  • Centers for Disease Control and Prevention. Surgical site infection event. National Healthcare Safety Network; 2021:1–39.
  • Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health-Syst Pharm. 2013;70(3):195–283. doi:10.2146/ajhp12056823327981
  • Anderson DJ, Sexton DJ. Antimicrobial prophylaxis for prevention of surgical site infection in adults. Waltham, MA: UptoDate; 2021.
  • Bhangu A, Ademuyiwa AO, Aguilera ML, et al. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis. 2018;18(5):516–525.29452941
  • Vincent J-L, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329. doi:10.1001/jama.2009.175419952319
  • Călina D, Docea AO, Rosu L, et al. Antimicrobial resistance development following surgical site infections. Mol Med Rep. 2017;15(2):681–688. doi:10.3892/mmr.2016.603427959419
  • Ben-Ami R, Rodríguez-Baño J, Arslan H, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis. 2009;49(5):682–690. doi:10.1086/60471319622043
  • Crader MF, Varacallo M. Preoperative antibiotic prophylaxis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
  • Crawford T, Rodvold KA, Solomkin JS. Vancomycin for surgical prophylaxis? Clin Infect Dis. 2012;54(10):1474–1479. doi:10.1093/cid/cis02722328468
  • Korol E, Johnston K, Waser N, et al. A systematic review of risk factors associated with surgical site infections among surgical patients. PLoS One. 2013;8(12):e83743. doi:10.1371/journal.pone.008374324367612
  • Cheadle WG. Risk factors for surgical site infection. Surg Infect. 2006;7(Suppl 1):S7–S11. doi:10.1089/sur.2006.7.s1-7
  • Biccard BM, Madiba TE, Kluyts HL, et al. Perioperative patient outcomes in the African surgical outcomes study: a 7-day prospective observational cohort study. Lancet. 2018;391(10130):1589–1598. doi:10.1016/S0140-6736(18)30001-129306587
  • Forrester JA, Koritsanszky LA, Amenu D, et al. Developing process maps as a tool for a surgical infection prevention quality improvement Initiative in resource-constrained settings. J Am Coll Surg. 2018;226(6):1103–1116.e1103. doi:10.1016/j.jamcollsurg.2018.03.02029574175
  • Holubar S. Antimicrobial stewardship in hospital settings. In: Hooper DC, editor. UpToDate. Waltham, MA: UpToDate; 2021.
  • Bischoff P, Kubilay NZ, Allegranzi B, Egger M, Gastmeier P. Effect of laminar airflow ventilation on surgical site infections: a systematic review and meta-analysis. Lancet Infect Dis. 2017;17(5):553–561. doi:10.1016/S1473-3099(17)30059-228216243
  • Wenzel RP. Minimizing surgical-site infections. N Engl J Med. 2010;362(1):75–77. doi:10.1056/NEJMe090875320054050
  • Lowy FD. Staphylococcus aureus Infections. N Engl J Med. 1998;339(8):520–532. doi:10.1056/NEJM1998082033908069709046
  • Gern BH, Greninger AL, Weissman SJ, Stapp JR, Tao Y, Qin X. Continued in vitro cefazolin susceptibility in methicillin-susceptible Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2018;17(1):5. doi:10.1186/s12941-018-0257-x29463249
  • Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog. 2002;85(Pt 1):57–72. doi:10.3184/00368500278323887011969119
  • Malabarba A, Nicas TI, Thompson RC. Structural modifications of glycopeptide antibiotics. Med Res Rev. 1997;17(1):69–137. doi:10.1002/(SICI)1098-1128(199701)17:1<69::AID-MED3>3.0.CO;2-R8979249
  • World Health Organization. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014.
  • Centers for Disease Control and Prevention. Staphylococcus aureus resistant to vancomycin–United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51(26):565–567.12139181
  • Centers for Disease Control and Prevention. Vancomycin-resistant Staphylococcus aureus–New York, 2004. MMWR Morb Mortal Wkly Rep. 2004;53(15):322–323.15103297
  • World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, Geneva; 2017.
  • Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res. 2019;21:169–176. doi:10.1016/j.jare.2019.10.00532071785
  • McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269–281.28656013
  • Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020;10(1):12689. doi:10.1038/s41598-020-69058-z32728110
  • Saravolatz LD, Pawlak J, Johnson LB. In vitro susceptibilities and molecular analysis of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus isolates. Clin Infect Dis. 2012;55(4):582–586. doi:10.1093/cid/cis49222615331
  • Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000;13(4):686–707. doi:10.1128/CMR.13.4.68611023964
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–317. doi:10.1086/42194615306996
  • Eliopoulos GM, Gold HS. Vancomycin-resistant Enterococci: mechanisms and clinical observations. Clin Infect Dis. 2001;33(2):210–219. doi:10.1086/32181511418881
  • Centers for Disease Prevention and Control. Antibiotic resistance threats in the United States; 2013.
  • Remschmidt C, Schröder C, Behnke M, Gastmeier P, Geffers C, Kramer TS. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany - 10 years of surveillance. Antimicrob Resist Infect Control. 2018;7:54. doi:10.1186/s13756-018-0353-x29760912
  • Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17(5):295–306. doi:10.1038/s41579-019-0159-830837684
  • Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. doi:10.7573/dic.21252729872449
  • Bush K. The ABCD’s of β-lactamase nomenclature. J Infect Chemother. 2013;19(4):549–559. doi:10.1007/s10156-013-0640-723828655
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-0919995920
  • Page MI, Badarau A. The mechanisms of catalysis by metallo beta-lactamases. Bioinorg Chem Appl. 2008;2008:576297. doi:10.1155/2008/576297
  • Brem J, Cain R, Cahill S, et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun. 2016;7:12406. doi:10.1038/ncomms1240627499424
  • Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med. 2017;37(2):303–315. doi:10.1016/j.cll.2017.01.00528457352
  • Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161–182. doi:10.1128/CMR.00036-0819136439
  • Grover N, Sahni AK, Bhattacharya S. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India. 2013;69(1):4–10. doi:10.1016/j.mjafi.2012.02.00124532926
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.200516223952
  • Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alm RA. Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother. 2014;58(10):5704–5713. doi:10.1128/AAC.03057-1425022578
  • Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201. doi:10.1128/CMR.00037-0920065329
  • Pilmis B, Cattoir V, Lecointe D, et al. Carriage of ESBL-producing Enterobacteriaceae in French hospitals: the PORTABLSE study. J Hosp Infect. 2018;98(3):247–252. doi:10.1016/j.jhin.2017.11.02229222035
  • Chen LF, Anderson DJ, Paterson DL. Overview of the epidemiology and the threat of Klebsiella pneumoniae carbapenemases (KPC) resistance. Infect Drug Resist. 2012;5:133–141. doi:10.2147/IDR.S2661323055754
  • Arnold RS, Thom KA, Sharma S, Phillips M, Kristie Johnson J, Morgan DJ. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011;104(1):40–45. doi:10.1097/SMJ.0b013e3181fd7d5a21119555
  • van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4):460–469. doi:10.1080/21505594.2016.122234327593176
  • Pesesky MW, Hussain T, Wallace M, et al. KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. Emerg Infect Dis. 2015;21(6):1034–1037. doi:10.3201/eid2106.14150425988236
  • Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018;5(16). doi:10.3389/fmolb.2018.00016
  • Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect. 2018;24(2):133–144. doi:10.1016/j.cmi.2017.08.03028893689
  • Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci. 2013;1277:91–104. doi:10.1111/j.1749-6632.2012.06796.x23163348
  • Mojica MF, Bonomo RA, Fast W. B1-metallo-β-lactamases: where do we stand? Curr Drug Targets. 2016;17(9):1029–1050. doi:10.2174/138945011666615100110562226424398
  • Oliphant CM, Green GM. Quinolones: a comprehensive review. Am Fam Physician. 2002;65(3):455–464.11858629
  • Shandera KC, Thibault GP, Deshon GE. Efficacy of one dose fluoroquinolone before prostate biopsy. Urology. 1998;52(4):641–643. doi:10.1016/S0090-4295(98)00311-29763085
  • Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51(5):1109–1117. doi:10.1093/jac/dkg22212697644
  • Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12–31. doi:10.1111/nyas.1283026190223
  • Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–1574. doi:10.1021/bi500056424576155
  • Lautenbach E, Fishman NO, Bilker WB, et al. Risk factors for fluoroquinolone resistance in nosocomial Escherichia coli and Klebsiella pneumoniae infections. Arch Intern Med. 2002;162(21):2469–2477. doi:10.1001/archinte.162.21.246912437407
  • Zhu D-M, Li Q-H, Shen Y, Zhang Q. Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis. Antimicrob Resist Infec Control. 2020;9(1):11. doi:10.1186/s13756-019-0675-331938541
  • Rezazadeh M, Baghchesaraei H, Peymani A. Plasmid-mediated quinolone-resistance (qnr) genes in clinical isolates of Escherichia coli collected from several hospitals of Qazvin and Zanjan Provinces, Iran. Osong Public Health Res Perspect. 2016;7(5):307–312. doi:10.1016/j.phrp.2016.08.00327812489
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629–640. doi:10.1016/S1473-3099(06)70599-017008172
  • Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infect Chemother. 2014;46(4):226–238. doi:10.3947/ic.2014.46.4.22625566402
  • Phillips CJ, Gilchrist M, Cooke FJ, et al. Adherence to antibiotic guidelines and reported penicillin allergy: pooled cohort data on prescribing and allergy documentation from two English National Health Service (NHS) trusts. BMJ Open. 2019;9(2):e026624. doi:10.1136/bmjopen-2018-026624
  • Savic LC, Khan DA, Kopac P, et al. Management of a surgical patient with a label of penicillin allergy: narrative review and consensus recommendations. Br J Anaesth. 2019;123(1):e82–e94. doi:10.1016/j.bja.2019.01.02630916014
  • Blumenthal KG, Ryan EE, Li Y, Lee H, Kuhlen JL, Shenoy ES. The impact of a reported penicillin allergy on surgical site infection risk. Clin Infect Dis. 2018;66(3):329–336. doi:10.1093/cid/cix79429361015
  • Macy E, Contreras R. Health care use and serious infection prevalence associated with penicillin “allergy” in hospitalized patients: a cohort study. J Allergy Clin Immunol. 2014;133(3):790–796. doi:10.1016/j.jaci.2013.09.02124188976
  • Ponce B, Raines BT, Reed RD, Vick C, Richman J, Hawn M. Surgical site infection after arthroplasty: comparative effectiveness of prophylactic antibiotics: do surgical care improvement project guidelines need to be updated? J Bone Joint Surg Am. 2014;96(12):970–977. doi:10.2106/JBJS.M.0066324951731
  • Pool C, Kass J, Spivack J, et al. Increased surgical site infection rates following clindamycin use in head and neck free tissue transfer. Otolaryngol Head Neck Surg. 2016;154(2):272–278. doi:10.1177/019459981561712926573570
  • Dhopeshwarkar N, Sheikh A, Doan R, et al. Drug-induced anaphylaxis documented in electronic health records. J Allergy Clin Immunol Pract. 2019;7(1):103–111. doi:10.1016/j.jaip.2018.06.01029969686
  • Blumenthal KG, Shenoy ES, Varughese CA, Hurwitz S, Hooper DC, Banerji A. Impact of a clinical guideline for prescribing antibiotics to inpatients reporting penicillin or cephalosporin allergy. Ann Allergy, Asthma Immunol. 2015;115(4):294–300.e292. doi:10.1016/j.anai.2015.05.01126070805
  • Park M, Markus P, Matesic D, Li JT. Safety and effectiveness of a preoperative allergy clinic in decreasing vancomycin use in patients with a history of penicillin allergy. Ann Allergy Asthma Immunol. 2006;97(5):681–687. doi:10.1016/S1081-1206(10)61100-317165279
  • Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–689. doi:10.1007/s40273-014-0243-x25471927
  • Charani E, Gharbi M, Frost G, Drumright L, Holmes A. Antimicrobial therapy in obesity: a multicentre cross-sectional study. J Antimicrob Chemother. 2015;70(10):2906–2912. doi:10.1093/jac/dkv18926174720
  • Polso AK, Lassiter JL, Nagel JL. Impact of hospital guideline for weight-based antimicrobial dosing in morbidly obese adults and comprehensive literature review. J Clin Pharm Therap. 2014;39(6):584–608. doi:10.1111/jcpt.1220025203631
  • Janson B, Thursky K. Dosing of antibiotics in obesity. Curr Opin Infect Dis. 2012;25(6):634–649. doi:10.1097/QCO.0b013e328359a4c123041773
  • Chopra T, Zhao JJ, Alangaden G, Wood MH, Kaye KS. Preventing surgical site infections after bariatric surgery: value of perioperative antibiotic regimens. Expert Rev Pharmacoecon Outcomes Res. 2010;10(3):317–328. doi:10.1586/erp.10.2620545596
  • Meng L, Mui E, Holubar MK, Deresinski SC. Comprehensive guidance for antibiotic dosing in obese adults. Pharmacother. 2017;37(11):1415–1431. doi:10.1002/phar.2023
  • Branch-Elliman W, O’Brien W, Strymish J, Itani K, Wyatt C, Gupta K. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg. 2019;154(7):590–598. doi:10.1001/jamasurg.2019.056931017647
  • Scher KS. Studies on the duration of antibiotic administration for surgical prophylaxis. Am Surg. 1997;63(1):59–62.8985073
  • Australian Commission on Safety and Quality in Health Care. Antimicrobial prescribing practice in Australian Hospitals: results of the 2019 Hospital National Antimicrobial Prescribing survey; 2021:1–45.
  • Zelenitsky SA, Ariano RE, Harding GK, Silverman RE. Antibiotic pharmacodynamics in surgical prophylaxis: an association between intraoperative antibiotic concentrations and efficacy. Antimicrob Agents Chemother. 2002;46(9):3026–3030. doi:10.1128/AAC.46.9.3026-3030.200212183263
  • Naik BI, Roger C, Ikeda K, et al. Comparative total and unbound pharmacokinetics of cefazolin administered by bolus versus continuous infusion in patients undergoing major surgery: a randomized controlled trial. Br J Anaesth. 2017;118(6):876–882. doi:10.1093/bja/aex02628505360
  • Swoboda SM, Merz C, Kostuik J, Trentler B, Lipsett PA. Does intraoperative blood loss affect antibiotic serum and tissue concentrations? Arch Surg. 1996;131(11):1165–1171. doi:10.1001/archsurg.1996.014302300470098911256
  • Zanetti G, Giardina R, Platt R. Intraoperative redosing of cefazolin and risk for surgical site infection in cardiac surgery. Emerg Infect Dis. 2001;7(5):828–831. doi:10.3201/eid0705.01750911791504
  • Costa AD. Assessment of operative times of multiple surgical specialties in a public university hospital. Einstein. 2017;15(2):200–205. doi:10.1590/s1679-45082017gs390228767919
  • Markantonis SL, Kostopanagiotou G, Panidis D, Smirniotis V, Voros D. Effects of blood loss and fluid volume replacement on serum and tissue gentamicin concentrations during colorectal surgery. Clin Ther. 2004;26(2):271–281. doi:10.1016/S0149-2918(04)90025-215038949
  • Ben-Ami R, Schwaber MJ, Navon-Venezia S, et al. Influx of extended-spectrum β-lactamase—producing Enterobacteriaceae into the hospital. Clin Infect Dis. 2006;42(7):925–934. doi:10.1086/50093616511754
  • Bhattacharya S. Is screening patients for antibiotic-resistant bacteria justified in the Indian context? Indian J Med Microbiol. 2011;29(3):213–217. doi:10.4103/0255-0857.8390221860099
  • Saied T, Hafez SF, Kandeel A, et al. Antimicrobial stewardship to optimize the use of antimicrobials for surgical prophylaxis in Egypt: a multicenter pilot intervention study. Am J Infect Control. 2015;43(11):e67–e71. doi:10.1016/j.ajic.2015.07.00426315059
  • Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152(8):784–791. doi:10.1001/jamasurg.2017.090428467526
  • Labricciosa FM, Sartelli M, Correia S, et al. Emergency surgeons’ perceptions and attitudes towards antibiotic prescribing and resistance: a worldwide cross-sectional survey. World J Emerg Surg. 2018;13(1):27. doi:10.1186/s13017-018-0190-529988647
  • Tan JA, Naik VN, Lingard L. Exploring obstacles to proper timing of prophylactic antibiotics for surgical site infections. Qual Saf Health Care. 2006;15(1):32–38. doi:10.1136/qshc.2004.01253416456207
  • Abdel-Aziz A, El-Menyar A, Al-Thani H, et al. Adherence of surgeons to antimicrobial prophylaxis guidelines in a tertiary general hospital in a rapidly developing country. Adv Pharmaco Sci. 2013;2013:842593.
  • Bedouch P, Labarère J, Chirpaz E, et al. Compliance with guidelines on antibiotic prophylaxis in total hip replacement surgery: results of a retrospective study of 416 patients in a teaching hospital. Infect Control Hosp Epidemiol. 2004;25(4):302–307. doi:10.1086/50239615108727
  • Bull AL, Russo PL, Friedman ND, Bennett NJ, Boardman CJ, Richards MJ. Compliance with surgical antibiotic prophylaxis – reporting from a statewide surveillance programme in Victoria, Australia. J Hosp Infect. 2006;63(2):140–147. doi:10.1016/j.jhin.2006.01.01816621135
  • Graham H, Vasireddy A, Nehra D. A national audit of antibiotic prophylaxis in elective laparoscopic cholecystectomy. Ann R Coll Surg Engl. 2014;96(5):377–380. doi:10.1308/003588414X1394618490068824992423
  • Miliani K, L’Hériteau F, Astagneau P. Group obotINS. Non-compliance with recommendations for the practice of antibiotic prophylaxis and risk of surgical site infection: results of a multilevel analysis from the INCISO Surveillance Network. J Antimicrob Chemother. 2009;64(6):1307–1315. doi:10.1093/jac/dkp36719837713
  • Mohamed Rizvi Z, Palasanthiran P, Wu C, Mostaghim M, McMullan B. Adherence to surgical antibiotic prophylaxis guidelines in children: a cohort study. J Paed Child Health. 2020;56(1):34–40. doi:10.1111/jpc.14484
  • Wright JD, Hassan K, Ananth CV, et al. Use of guideline-based antibiotic prophylaxis in women undergoing gynecologic surgery. Obstet Gynecol. 2013;122(6):1145–1153. doi:10.1097/AOG.0b013e3182a8a36a24201674
  • Romero Viamonte K, Salvent Tames A, Sepúlveda Correa R, Rojo Manteca MV, Martín-Suárez A. Compliance with antibiotic prophylaxis guidelines in caesarean delivery: a retrospective, drug utilization study (indication-prescription type) at an Ecuadorian hospital. Antimicrob Resist Infect Control. 2021;10(1):12. doi:10.1186/s13756-020-00843-133436096
  • Hawkins RB, Levy SM, Senter CE, et al. Beyond surgical care improvement program compliance: antibiotic prophylaxis implementation gaps. Am J Surg. 2013;206(4):451–456. doi:10.1016/j.amjsurg.2013.02.00923809676
  • Haney V, Maman S, Prozesky J, Bezinover D, Karamchandani K. Improving intraoperative administration of surgical antimicrobial prophylaxis: a quality improvement report. BMJ Open Quality. 2020;9(3):e001042. doi:10.1136/bmjoq-2020-001042
  • Mahmoudi L, Ghouchani M, Mahi-Birjand M, Bananzadeh A, Akbari A. Optimizing compliance with surgical antimicrobial prophylaxis guidelines in patients undergoing gastrointestinal surgery at a referral teaching hospital in southern Iran: clinical and economic impact. Infect Drug Resist. 2019;12:2437–2444. doi:10.2147/IDR.S21272831496756
  • Telfah S, Nazer L, Dirani M, Daoud F. Improvement in adherence to surgical antimicrobial prophylaxis guidelines after implementation of a multidisciplinary quality improvement project. Sultan Qaboos Univ Med J. 2015;15(4):e523–e527. doi:10.18295/squmj.2015.15.04.01426629381
  • Segala FV, Murri R, Taddei E, et al. Antibiotic appropriateness and adherence to local guidelines in perioperative prophylaxis: results from an antimicrobial stewardship intervention. Antimicrob Resist Infect Control. 2020;9(1):164. doi:10.1186/s13756-020-00814-633106190
  • Cohen ME, Salmasian H, Li J, et al. Surgical antibiotic prophylaxis and risk for postoperative antibiotic-resistant infections. J Am Coll Surg. 2017;225(5):631–638.e633. doi:10.1016/j.jamcollsurg.2017.08.01029030239
  • Ribed A, Monje B, García-González X, et al. Improving surgical antibiotic prophylaxis adherence and reducing hospital readmissions: a bundle of interventions including health information technologies. Eur J Hosp Pharm. 2020;27(4):237–242. doi:10.1136/ejhpharm-2018-00166632587084
  • Pons-Busom M, Aguas-Compaired M, Delás J, Eguileor-Partearroyo B. Compliance with local guidelines for antibiotic prophylaxis in surgery. Infect Control Hosp Epidemiol. 2004;25(4):308–312. doi:10.1086/50239715108728
  • World Health Organization. World Health Alliance for Patient Safety. Implementation Manual: WHO Surgical Safety Checklist. 1st ed. Geneva: World Health Organization; 2008.
  • Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491–499. doi:10.1056/NEJMsa081011919144931
  • de Vries EN, Dijkstra L, Smorenburg SM, Meijer RP, Boermeester MA. The SURgical PAtient Safety System (SURPASS) checklist optimizes timing of antibiotic prophylaxis. Patient Saf Surg. 2010;4(1):6. doi:10.1186/1754-9493-4-620388204
  • White MC, Peven K, Clancy O, et al. Implementation strategies and the uptake of the World Health Organization surgical safety checklist in low and middle income countries: a systematic review and meta-analysis. Ann Surg. 2021;273:6. doi:10.1097/SLA.0000000000003944
  • White MC, Randall K, Ravelojaona VA, et al. Sustainability of using the WHO surgical safety checklist: a mixed-methods longitudinal evaluation following a nationwide blended educational implementation strategy in Madagascar. BMJ Glob Health. 2018;3(6):e001104. doi:10.1136/bmjgh-2018-001104
  • White MC, Daya L, Karel FKB, et al. Using the knowledge to action framework to describe a nationwide implementation of the WHO surgical safety checklist in cameroon. Anesth Analg. 2020;130(5):1425–1434. doi:10.1213/ANE.000000000000458631856007
  • White MC, Randall K, Capo-Chichi NFE, et al. Implementation and evaluation of nationwide scale-up of the surgical safety checklist. Br J Surg. 2019;106(2):e91–e102. doi:10.1002/bjs.1103430620076
  • White MC, Leather AJM, Sevdalis N, Healey A. Economic case for scale-up of the WHO surgical safety checklist at the national level in Sub-Saharan Africa. Ann Surg. 2020. doi:10.1097/SLA.0000000000004498
  • Kavanagh KT, Calderon LE, Saman DM, Abusalem SK. The use of surveillance and preventative measures for methicillin-resistant Staphylococcus aureus infections in surgical patients. Antimicrob Resist Infect Control. 2014;3(1):18. doi:10.1186/2047-2994-3-1824847437
  • Lee AS, Cooper BS, Malhotra-Kumar S, et al. Comparison of strategies to reduce meticillin-resistant Staphylococcus aureus rates in surgical patients: a controlled multicentre intervention trial. BMJ Open. 2013;3(9):e003126. doi:10.1136/bmjopen-2013-003126
  • Saraswat MK, Magruder JT, Crawford TC, et al. Preoperative Staphylococcus aureus screening and targeted decolonization in cardiac surgery. Ann Thorac Surg. 2017;104(4):1349–1356. doi:10.1016/j.athoracsur.2017.03.01828577844
  • World Health Organization. WHO surgical site infection prevention guidelines web appendix 4. Summary of a systematic review on screening for extended spectrum beta-lactamase and the impact on surgical antibiotic prophylaxis. Geneva; 2018.
  • Dubinsky-Pertzov B, Temkin E, Harbarth S, et al. Carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and the risk of surgical site infection after colorectal surgery: a prospective cohort study. Clin Infect Dis. 2019;68(10):1699–1704. doi:10.1093/cid/ciy76830204851
  • Bonkat G, Pilatz A, Wagenlehner F. Time to adapt our practice? The European commission has restricted the use of fluoroquinolones since March 2019. Eur Urol. 2019;76(3):273–275. doi:10.1016/j.eururo.2019.06.01131239078
  • Freitas DM, Moreira DM. Fosfomycin trometamol vs ciprofloxacin for antibiotic prophylaxis before transrectal ultrasonography-guided prostate biopsy: a meta-analysis of clinical studies. Arab J Urol. 2019;17(2):114–119. doi:10.1080/2090598X.2019.159263631285922
  • Guss J, Abuzeid WM, Doghramji L, Edelstein PH, Chiu AG. Fluoroquinolone-resistant Pseudomonas aeruginosa in chronic rhinosinusitis. Orl J Otorhinolaryngol Relat Spec. 2009;71(5):263–267. doi:10.1159/00024242819797934
  • Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Am J Surg. 2005;189(4):395–404. doi:10.1016/j.amjsurg.2005.01.01515820449
  • Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326(5):281–286. doi:10.1056/NEJM1992013032605011728731
  • de Jonge SW, Gans SL, Atema JJ, Solomkin JS, Dellinger PE, Boermeester MA. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: a systematic review and meta-analysis. Medicine. 2017;96(29):e6903. doi:10.1097/MD.000000000000690328723736
  • Spencer S, Ipema H, Hartke P, et al. Intravenous push administration of antibiotics: literature and considerations. Hosp Pharm. 2018;53(3):157–169. doi:10.1177/001857871876025730147136
  • Lexicomp. Adult Drug Information Handbook. Waltham, MA; 2020.
  • Knox MC, Edye M. Adherence to surgical antibiotic prophylaxis guidelines in New South Wales, Australia: identifying deficiencies and regression analysis of contributing factors. Surg Infect (Larchmt). 2016;17(2):203–209. doi:10.1089/sur.2015.19526588725
  • Zvonar RK, Bush P, Roth V. Practice changes to improve delivery of surgical antibiotic prophylaxis. Healthc Q. 2008;11(3):141–144. doi:10.12927/hcq.2008.1966418382176
  • Charani E, Ahmad R, Rawson TM, Castro-Sanchèz E, Tarrant C, Holmes AH. The differences in antibiotic decision-making between acute surgical and acute medical teams: an ethnographic study of culture and team dynamics. Clin Infect Dis. 2019;69(1):12–20. doi:10.1093/cid/ciy84430445453
  • Charani E, Tarrant C, Moorthy K, Sevdalis N, Brennan L, Holmes AH. Understanding antibiotic decision making in surgery-a qualitative analysis. Clin Microbiol Infect. 2017;23(10):752–760. doi:10.1016/j.cmi.2017.03.01328341492
  • Charani E, Smith I, Skodvin B, et al. Investigating the cultural and contextual determinants of antimicrobial stewardship programmes across low-, middle- and high-income countries-a qualitative study. PLoS One. 2019;14(1):e0209847. doi:10.1371/journal.pone.020984730650099
  • Davey P, Marwick CA, Scott CL, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2:CD003543.28178770
  • Singh S, Mendelson M, Surendran S, et al. Investigating infection management and antimicrobial stewardship in surgery: a qualitative study from India and South Africa. Clin Microbiol Infect. 2021;27(10):1455–1464. doi:10.1016/j.cmi.2020.12.01333422658
  • Ierano C, Thursky K, Peel T, Rajkhowa A, Marshall C, Ayton D. Influences on surgical antimicrobial prophylaxis decision making by surgical craft groups, anaesthetists, pharmacists and nurses in public and private hospitals. PLoS One. 2019;14(11):e0225011. doi:10.1371/journal.pone.022501131725771
  • Charani E, Castro-Sanchez E, Sevdalis N, et al. Understanding the determinants of antimicrobial prescribing within hospitals: the role of “prescribing etiquette”. Clin Infect Dis. 2013;57(2):188–196. doi:10.1093/cid/cit21223572483
  • Charani E, de Barra E, Rawson TM, et al. Antibiotic prescribing in general medical and surgical specialties: a prospective cohort study. Antimicrob Resist Infect Control. 2019;8:151. doi:10.1186/s13756-019-0603-631528337
  • de Jonge SW, Boldingh QJJ, Solomkin JS, et al. Effect of postoperative continuation of antibiotic prophylaxis on the incidence of surgical site infection: a systematic review and meta-analysis. Lancet Infect Dis. 2020;20(10):1182–1192. doi:10.1016/S1473-3099(20)30084-032470329
  • Bonaconsa C, Mbamalu O, Mendelson M, et al. Visual mapping of team dynamics and communication patterns on surgical ward rounds: an ethnographic study. BMJ Qual Saf. 2021;30:812–824. doi:10.1136/bmjqs-2020-012372
  • Anahtar MN, Yang JH, Kanjilal S, McAdam AJ. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J Clin Microbiol. 2021;59(7):e01260–01220. doi:10.1128/JCM.01260-20
  • Feretzakis G, Loupelis E, Sakagianni A, et al. Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics. 2020;9(2):50. doi:10.3390/antibiotics9020050
  • Luong T, Salabarria AC, Roach DR. Phage therapy in the resistance era: where do we Stand and where are we going? Clin Ther. 2020;42(9):1659–1680. doi:10.1016/j.clinthera.2020.07.01432883528
  • Rubalskii E, Ruemke S, Salmoukas C, et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics. 2020;9(5):232. doi:10.3390/antibiotics9050232
  • Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 2020;6(1):100. doi:10.1057/s41599-020-0478-4
  • Narasimhaiah MH, Asrani JY, Palaniswamy SM, et al. Therapeutic potential of Staphylococcal bacteriophages for nasal decolonization of Staphylococcus aureus in Mice. Adv Microbiol. 2013;03(01):9. doi:10.4236/aim.2013.31008
  • Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol. 2012;5(6):403–420. doi:10.1177/1756283X12453637
  • Gargiullo L, Del Chierico F, D’Argenio P, Putignani L. Gut Microbiota modulation for multidrug-resistant organism decolonization: present and future perspectives. Front Microbiol. 2019;10:1704. doi:10.3389/fmicb.2019.0170431402904
  • Tavoukjian V. Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis. J Hosp Infect. 2019;102(2):174–188. doi:10.1016/j.jhin.2019.03.01030926290
  • Paskovaty A, Pflomm JM, Myke N, Seo SK. A multidisciplinary approach to antimicrobial stewardship: evolution into the 21st century. Int J Antimicrob Agents. 2005;25(1):1–10. doi:10.1016/j.ijantimicag.2004.09.00115620820