202
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Prevalence and Molecular Characteristics Based on Whole Genome Sequencing of Mycobacterium tuberculosis Resistant to Four Anti-Tuberculosis Drugs from Southern Xinjiang, China

, , ORCID Icon, , , , , , , , , & show all
Pages 3379-3391 | Published online: 24 Aug 2021

References

  • MacNeilAGP, SismanidisC, DateA, MaloneyS, FloydK, FloydK. Global epidemiology of tuberculosis and progress toward meeting global targets — worldwide, 2018. MMWR Morb Mortal Wkly Rep. 2020;69:281–285. doi:10.15585/mmwr.mm6911a232191687
  • World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization, Licence: CC BY-NC-SA 30 IGO; 2020.
  • Wang L, Chen Sh, Zhao Y, et al. The fifth China national epidemiology of tuberculosis survey 2010. Chin J Antituberculos. 2012;34(8):485–508.
  • DuanQ, ChenZ, ChenC, et al. The prevalence of drug-resistant tuberculosis in Mainland China: an updated systematic review and meta-analysis. PLoS One. 2016;11(2):e0148041. doi:10.1371/journal.pone.014804126859846
  • WanL, GuoQ, WeiJH, et al. Accuracy of a reverse dot blot hybridization assay for simultaneous detection of the resistance of four anti-tuberculosis drugs in Mycobacterium tuberculosis isolated from China. Infect Dis Poverty. 2020;9(1):38. doi:10.1186/s40249-020-00652-z32299480
  • WanL, LiuH, LiM, et al. Genomic analysis identifies mutations concerning drug-resistance and Beijing genotype in multidrug-resistant Mycobacterium tuberculosis isolated from China. Front Microbiol. 2020;11:1444. doi:10.3389/fmicb.2020.0144432760357
  • RabahiMF, ConceiçãoEC, de PaivaLO, et al. Characterization of Mycobacterium tuberculosis var. africanum isolated from a patient with pulmonary tuberculosis in Brazil. Infect Gene Evol. 2020;85:104550. doi:10.1016/j.meegid.2020.104550
  • LiMC, ChenR, LinSQ, et al. Detecting ethambutol resistance in Mycobacterium tuberculosis isolates in China: a comparison between phenotypic drug susceptibility testing methods and DNA sequencing of embAB. Front Microbiol. 2020;11:781. doi:10.3389/fmicb.2020.0078132457711
  • LiG, GuoQ, LiuH, et al. Detection of resistance to fluoroquinolones and second-line injectable drugs among Mycobacterium tuberculosis by a reverse dot blot hybridization assay. Infect Drug Resist. 2020;13:4091–4104. doi:10.2147/IDR.S27020933204126
  • EddabraR, NeffaM. Mutations associated with rifampicin resistance in Mycobacterium tuberculosis Isolates from Moroccan patients: systematic review. Interdiscip Perspect Infect Dis. 2020;2020:5185896. doi:10.1155/2020/518589633133185
  • UnissaAN, SubbianS, HannaLE, SelvakumarN. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:474–492. doi:10.1016/j.meegid.2016.09.00427612406
  • ChenY, ZhaoB, LiuHC, et al. Prevalence of mutations conferring resistance among multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in China. J Antibiot (Tokyo). 2016;69(3):149–152. doi:10.1038/ja.2015.10626486879
  • ZhouA, NawazM, DuanY, et al. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates from Xi’an, China. Microb Drug Resist. 2011;17(2):275–281. doi:10.1089/mdr.2010.013521388297
  • LuoD, ChenQ, XiongG, et al. Prevalence and molecular characterization of multidrug-resistant M. tuberculosis in Jiangxi province, China. Sci Rep. 2019;9(1):7315. doi:10.1038/s41598-019-43547-231086215
  • FarhatMR, SultanaR, IartchoukO, et al. Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med. 2016;194(5):621–630. doi:10.1164/rccm.201510-2091OC26910495
  • MiottoP, TessemaB, TaglianiE, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J. 2017;50(6):1701354. doi:10.1183/13993003.01354-201729284687
  • LiGL, ZhaoDF, XieT, et al. Molecular characterization of drug-resistant Beijing family isolates of Mycobacterium tuberculosis from Tianjin, China. Biomed Environ Sci. 2010;23(3):188–193. doi:10.1016/S0895-3988(10)60051-720708497
  • SattaG, LipmanM, SmithGP, ArnoldC, KonOM, McHughTD. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?Clin Microbiol Infect. 2018;24(6):604–609. doi:10.1016/j.cmi.2017.10.03029108952
  • CollF, McNerneyR, PrestonMD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7(1):51. doi:10.1186/s13073-015-0164-026019726
  • AubryA, SougakoffW, BodzongoP, et al. First evaluation of drug-resistant Mycobacterium tuberculosis clinical isolates from Congo revealed misdetection of fluoroquinolone resistance by line probe assay due to a double substitution T80A-A90G in GyrA. PLoS One. 2014;9(4):e95083. doi:10.1371/journal.pone.009508324743770
  • CLSI. Susceptibiliy testing of mycbacteria, Nocardia spp., and other aerobic actinomycetes. 3rd ed. In: CLSI Standard M24. Wayne, PA: Cinical and Laboratory Standards Institute; 2018.
  • MvelaseNR, PillayM, SibandaW, NgozoJN, BrustJCM, MlisanaKP. rpoB mutations causing discordant rifampicin susceptibility in Mycobacterium tuberculosis: retrospective analysis of prevalence, phenotypic, genotypic, and treatment outcomes. Open Forum Infect Dis. 2019;6(4):ofz065. doi:10.1093/ofid/ofz06531024968
  • AliA, HasanZ, McNerneyR, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One. 2015;10(2):e0117771. doi:10.1371/journal.pone.011777125719196
  • Kardan-YamchiJ, KazemianH, BattagliaS, et al. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of Mycobacterium tuberculosis from Iran. J Clin Med. 2020;9(2):465. doi:10.3390/jcm9020465
  • World health organization. Updated Interim Critical Concentrations for First-Line and Second-Line DST (As for May 2012). World Health Organization; 2012.
  • Honoré-BouaklineS, VincensiniJP, GiacuzzoV, LagrangePH, HerrmannJL. Rapid diagnosis of extrapulmonary tuberculosis by PCR: impact of sample preparation and DNA extraction. J Clin Microbiol. 2003;41(6):2323–2329. doi:10.1128/JCM.41.6.2323-2329.200312791844
  • HasmanH, SaputraD, Sicheritz-PontenT, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. 2014;52(1):139–146. doi:10.1128/JCM.02452-1324172157
  • KamerbeekJ, SchoulsL, KolkA, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–914. doi:10.1128/jcm.35.4.907-914.19979157152
  • QiYC, MaMJ, LiDJ, et al. Multidrug-resistant and extensively drug-resistant tuberculosis in multi-ethnic region, Xinjiang Uygur Autonomous Region, China. PLoS One. 2012;7:e32103.22384153
  • ZhaoY, XuS, WangL, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–2170. doi:10.1056/NEJMoa110878922670902
  • YuanL, MiL, LiY, HuiZ, LiZ, LiZ. Genotypic characteristics of Mycobacterium tuberculosis circulating in Xinjiang, China. Infect Dis. 2016;48(2):108–115. doi:10.3109/23744235.2015.1087649
  • PangY, ZhouY, BingZ, et al. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976. doi:10.1371/journal.pone.003297622412962
  • WangXH, MaAG, HanXX, et al. Correlations between drug resistance of Beijing/W lineage clinical isolates of Mycobacterium tuberculosis and sublineages: a 2009–2013 prospective study in Xinjiang province, China. Med Sci Monit. 2015;21:1313–1318. doi:10.12659/MSM.89295125950148
  • PangY, ZhouY, ZhaoB, et al. Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One. 2012;7(3):e32976.22412962
  • ZhaoLL, HuangMX, XiaoTY, et al. Prevalence, risk and genetic characteristics of drug-resistant tuberculosis in a tertiary care tuberculosis hospital in China. Infect Drug Resist. 2019;12:2457–2465. doi:10.2147/IDR.S20997131496759
  • ZhaoLL, ChenY, ChenZN, et al. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hunan, China. Antimicrob Agents Chemother. 2014;58(6):3475–3480. doi:10.1128/AAC.02426-1424733464
  • GenestetC, HodilleE, BerlandJL, et al. Whole-genome sequencing in drug susceptibility testing of Mycobacterium tuberculosis in routine practice in Lyon, France. Int J Antimicrob Agents. 2020;55(4):105912. doi:10.1016/j.ijantimicag.2020.10591231991222
  • CampbellPJ, MorlockGP, SikesRD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(5):2032–2041. doi:10.1128/AAC.01550-1021300839
  • IsakovaJ, SovkhozovaN, VinnikovD, et al. Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic. BMC Microbiol. 2018;18(1):22. doi:10.1186/s12866-018-1168-x29566660
  • MachadoD, CoutoI, PerdigãoJ, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One. 2012;7(4):e34538. doi:10.1371/journal.pone.003453822493700
  • RodriguesL, VillellasC, BailoR, ViveirosM, AínsaJA. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(2):751–757. doi:10.1128/AAC.01482-1223165464
  • IslamMM, TanY, HameedH, ChhotarayC, ZhangT. Phenotypic and genotypic characterization of streptomycin-resistant multidrug-resistant Mycobacterium tuberculosis clinical isolates in Southern China. Microb Drug Resist. 2020;26(7):766–775. doi:10.1089/mdr.2019.024531976809
  • Madrazo-MoyaCF, Cancino-MuñozI, Cuevas-CórdobaB, et al. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One. 2019;14(6):e0213046. doi:10.1371/journal.pone.021304631166945
  • WuX, GaoR, ShenX, et al. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int J Infect Dis. 2020;96:48–53. doi:10.1016/j.ijid.2020.04.03932339720
  • Al-MutairiNM, AhmadS, MokaddasEM. Correction to: molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res. 2020;25(1):14. doi:10.1186/s40001-020-00412-732312322
  • ChenX, HeG, WangS, LinS, ChenJ, ZhangW. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance Mycobacterium tuberculosis isolates from China. Front Microbiol. 2019;10:1741. doi:10.3389/fmicb.2019.0174131417530
  • ZhaoLL, LiuHC, SunQ, et al. Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China. Diagn Microbiol Infect Dis. 2015;83(2):150–153. doi:10.1016/j.diagmicrobio.2015.06.02026254141
  • JagielskiT, IgnatowskaH, BakułaZ, et al. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS One. 2014;9(6):e100078. doi:10.1371/journal.pone.010007824937123
  • ZhaoLL, SunQ, LiuHC, et al. Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother. 2015;59(4):2045–2050. doi:10.1128/AAC.04933-1425605360
  • KhosraviAD, SirousM, AbdiM, AhmadkhosraviN. Characterization of the most common embCAB gene mutations associated with ethambutol resistance in Mycobacterium tuberculosis isolates from Iran. Infect Drug Resist. 2019;12:579–584. doi:10.2147/IDR.S19680030881063
  • MohammadiB, RamazanzadehR, NouriB, RouhiS. Frequency of codon 306 mutations in embB gene of Mycobacterium tuberculosis resistant to ethambutol: a systematic review and meta-analysis. Int J Prev Med. 2020;11:112. doi:10.4103/ijpvm.IJPVM_114_1933088440
  • Allix-BéguecC, ArandjelovicI, BiL, et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med. 2018;379(15):1403–1415.30280646
  • MadisonB, Robinson-DunnB, GeorgeI, et al. Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol. 2002;40(11):3976–3979. doi:10.1128/JCM.40.11.3976-3979.200212409361
  • ZhangN, ZhaoXQ, WanKL. Preliminary study on the appropriate concentrations of drug used in the drug-susceptibility test to detect the Ethambutol-resistant isolates of Mycobacterium tuberculosis. Chin J Zoonoses. 2009;25:1049–1053.
  • BakułaZ, NapiórkowskaA, BieleckiJ, Augustynowicz-KopećE, ZwolskaZ, JagielskiT. Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int. 2013;2013:167954. doi:10.1155/2013/16795424392447
  • PapaventsisD, CasaliN, KontsevayaI, DrobniewskiF, CirilloDM, NikolayevskyyV. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2017;23(2):61–68. doi:10.1016/j.cmi.2016.09.00827665704