218
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Emergence and Genetic Characterization of Plasmid-Encoded VIM-2-Producing Pseudomonas stutzeri with Novel Integron In1998 Isolated from Cerebrospinal Fluid

, , , , , , & show all
Pages 3415-3424 | Published online: 24 Aug 2021

References

  • BisharatN, GorlachevT, KenessY. 10-years hospital experience in Pseudomonas stutzeri and literature review. Open Infect Dis J. 2012;6(1). doi:10.2174/1874279301206010021
  • LalucatJ, BennasarA, BoschR, et al. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev. 2006;70(2):510–547. doi:10.1128/MMBR.00047-0516760312
  • BurriR, StutzerA. Ueber Nitrat zerstörende Bakterien und den durch dieselben bedingten Stickstoffverlust. Zentralbl Bakteriol Parasitenkd Abt II. 1895;1:257–265.
  • ZumftWG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997;61(4):533–616.9409151
  • NobleRC, OvermanSB. Pseudomonas stutzeri infection a review of hospital isolates and a review of the literature. Diagn Microbiol Infect Dis. 1994;19(1):51–56. doi:10.1016/0732-8893(94)90051-57956014
  • HalabiZ, MocadieM, El ZeinS, et al. Pseudomonas stutzeri prosthetic valve endocarditis: a case report and review of the literature. J Infect Public Health. 2019;12(3):434–437. doi:10.1016/j.jiph.2018.07.00430049610
  • ShalabiA, EhrlichT, SchäfersH-J, et al. Infective endocarditis caused by Pseudomonas stutzeri in a patient with Marfan syndrome: case report and brief literature review. IDCases. 2017;10:22–25. doi:10.1016/j.idcr.2017.07.01028831383
  • BonaresMJ, VaismanA, SharkawyA. Prosthetic vascular graft infection and prosthetic joint infection caused by Pseudomonas stutzeri. IDCases. 2016;6:106–108. doi:10.1016/j.idcr.2016.10.00927942461
  • Yan-J-J, HsuehP-R, KoW-C, et al. Metallo-β-Lactamases in clinical pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother. 2001;45(8):2224–2228. doi:10.1128/AAC.45.8.2224-2228.200111451678
  • PoirelL, Rodríguez-MartínezJ-M, Al NaiemiN, et al. Characterization of DIM-1, an integron-encoded metallo-β-lactamase from a Pseudomonas stutzeri clinical isolate in the Netherlands. Antimicrob Agents Chemother. 2010;54(6):2420–2424. doi:10.1128/AAC.01456-0920308383
  • AnaPA, GomesMZ, SilvaAR, et al. IMP-16 in Pseudomonas putida and Pseudomonas stutzeri: potential reservoirs of multidrug resistance. J Med Microbiol. 2010;59(9):1130–1131. doi:10.1099/jmm.0.020487-020507999
  • BasharS, SanyalSK, SultanaM, et al. Emergence of IntI1 associated blaVIM-2 gene cassette-mediated carbapenem resistance in opportunistic pathogen Pseudomonas stutzeri. Emerging Microbes Infect. 2017;6(1):1–3. doi:10.1038/emi.2017.12
  • WalshTR, TolemanMA, PoirelL, et al. Metallo-β-lactamases: the quiet before the storm?Clin Microbiol Rev. 2005;18(2):306–325. doi:10.1128/CMR.18.2.306-325.200515831827
  • LaurettiL, RiccioML, MazzariolA, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–1590. doi:10.1128/AAC.43.7.158410390207
  • ZhaoW-H, HuZ-Q. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. Future Microbiol. 2011;6(3):317–333. doi:10.2217/fmb.11.1321449842
  • PoirelL, NaasT, NicolasD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891–897. doi:10.1128/AAC.44.4.891-897.200010722487
  • DocquierJ-D, Lamotte-BrasseurJ, GalleniM, et al. On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J Antimicrob Chemother. 2003;51(2):257–266. doi:10.1093/jac/dkg06712562689
  • KazmierczakKM, RabineS, HackelM, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–1078. doi:10.1128/AAC.02379-1526643349
  • BizziniA, GreubG. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microb infect. 2010;16(11):1614–1619. doi:10.1111/j.1469-0691.2010.03311.x
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing,30th. (Wayne, PA.2020)(CLSI supplement M100).
  • PoirelL, WalshTR, CuvillierV, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.00221398074
  • LiuY, LiuK, YuX, et al. Identification and control of a Pseudomonas spp (P. fulva and P. putida) bloodstream infection outbreak in a teaching hospital in Beijing, China. Int J Infect Dis. 2014;23:105–108. doi:10.1016/j.ijid.2014.02.01324747963
  • TenoverFC, ArbeitRD, GoeringRV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233. doi:10.1128/jcm.33.9.2233-2239.19957494007
  • BartonBM, HardingGP, ZuccarelliAJ. A general method for detecting and sizing large plasmids. Anal Biochem. 1995;226(2):235–240. doi:10.1006/abio.1995.12207793624
  • ZengL, ZhanZ, HuL, et al. Genetic characterization of a blaVIM–24-carrying IncP-7β plasmid p1160-VIM and a blaVIM–4-harboring integrative and conjugative element Tn6413 from clinical pseudomonas aeruginosa. Front Microbiol. 2019;10:213. doi:10.3389/fmicb.2019.0021330863370
  • Yee-GuardinoS, Danziger-IsakovL, KnouseM, et al. Nosocomially acquired Pseudomonas stutzeri brain abscess in a child: case report and review. Infect Control Hospital Epidemiol. 2006;27(6):630–632. doi:10.1086/504935
  • RoigP, OrtiA, NavarroV. Meningitis due to Pseudomonas stutzeri in a patient infected with human immunodeficiency virus. Clin Infect Dis. 1996;22(3):587–588. doi:10.1093/clinids/22.3.5878852995
  • AcunerI, CobanA, FişginT, et al. Meningitis due to Pseudomonas stutzeri: a case report. Mikrobiyol Bul. 2004;38(3):261–264.15490847
  • SuenbuelM, ZivalioğluM. Community-acquired Pseudomonas stutzeri meningitis in an immunocompetent patient. Mikrobiyol Bul. 2009;43(1):159–162.19334394
  • BolandBS, DulaiPS, ChangM, et al. Pseudomonas meningitis during vedolizumab therapy for Crohn’s disease. Am J Gastroenterol. 2015;110(11):1631. doi:10.1038/ajg.2015.32626618431
  • MaBT, AnutaM, FerrerP. Pseudomonas stutzeri infection presenting as delayed-onset adult bacterial meningitis in two post-neurosurgery patients: a case report. J Neurol Sci. 2019;405:112. doi:10.1016/j.jns.2019.10.1781
  • SaderHS, JonesRN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents. 2005;25(2):95–109. doi:10.1016/j.ijantimicag.2004.10.00215664479
  • BisharaJ, RobenshtokE, SamraZ, et al. Prosthetic knee septic arthritis due to Pseudomonas stutzeri. Canadian J Infect Dis. 2000;11(6):329–331. doi:10.1155/2000/852073
  • ShahA, SengerD, GargB, et al. Post cataract Pseudomonas stutzeri endophthalmitis: report of a case and review of literature. Indian J Ophthalmol. 2020;68(1):232. doi:10.4103/ijo.IJO_334_1931856535
  • BennettPM. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother. 1999;43(1):1–4. doi:10.1093/jac/43.1.1
  • QingY, CaoK-Y, FangZ-L, et al. Outbreak of PER-1 and diversity of β-lactamases among ceftazidime-resistantbla VIM, a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas aeruginosa Clinical isolates. J med microbiol. 2014;63(3):386–392. doi:10.1099/jmm.0.069427-024398232
  • TadaT, NhungPH, Miyoshi-AkiyamaT, et al. IMP-51, a novel IMP-type metallo-β-lactamase with increased doripenem-and meropenem-hydrolyzing activities, in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 2015;59(11):7090–7093. doi:10.1128/AAC.01611-1526282421
  • PapagiannitsisCC, MedveckyM, ChudejovaK, et al. Molecular characterization of carbapenemase-producing Pseudomonas aeruginosa of Czech origin and evidence for clonal spread of extensively resistant sequence type 357 expressing IMP-7 metallo-β-lactamase. Antimicrob Agents Chemother. 2017;61(12):e01811–17. doi:10.1128/AAC.01811-1728993328
  • TolemanMA, VinodhH, SekarU, et al. blaVIM-2-harboring integrons isolated in India, Russia, and the United States arise from an ancestral class 1 integron predating the formation of the 3′ conserved sequence. Antimicrob Agents Chemother. 2007;51(7):2636–2638. doi:10.1128/AAC.01043-0617438051
  • WalshTR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis. 2008;21(4):367–371. doi:10.1097/QCO.0b013e328303670b18594288
  • ZhengZ, YeL, ChanEW-C, et al. Identification and characterization of a conjugative blaVIM-1-bearing plasmid in Vibrio alginolyticus of food origin. J Antimicrob Chemother. 2019;74(7):1842–1847. doi:10.1093/jac/dkz14030993329
  • Kamali-MoghaddamM, SundströmL. Arrayed transposase-binding sequences on the ends of transposon Tn5090/Tn402. Nucleic Acids Res. 2001;29(4):1005–1011. doi:10.1093/nar/29.4.100511160934
  • YeoCC, ThamJM, KwongSM, et al. Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 of Pseudomonas alcaligenes. FEMS Microbiol Lett. 1998;165(2):253–260. doi:10.1111/j.1574-69689742696
  • GoetzA, VictorLY, HanchettJE, et al. Pseudomonas stutzeri bacteremia associated with hemodialysis. Arch Intern Med. 1983;143(10):1909–1912. doi:10.1001/archinte.1983.003501000730186625777
  • KeysT, Melton IIIL, MakerM, et al. A suspected hospital outbreak of pseudobacteremia due to Pseudomonas stutzeri. J Infect Dis. 1983;147(3):489–493. doi:10.1093/infdis/147.3.4896833795
  • García-ValdésE, MuletM, LalucatJ. Insights into the life styles of Pseudomonas stutzeri.. Pseudomonas Springer. 2010;177–198. doi:10.1007/978-90-481-3909-5_6
  • ScottaC, JuanC, CabotG, et al. Environmental microbiota represents a natural reservoir for dissemination of clinically relevant metallo-β-lactamases. Antimicrob Agents Chemother. 2011;55(11):5376–5379. doi:10.1128/AAC.00716-1121859934
  • JuanC, ZamoranoL, MenaA, et al. Metallo-β-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. J Antimicrobial Chemother. 2010;65(3):474–478. doi:10.1093/jac/dkp491