106
Views
1
CrossRef citations to date
0
Altmetric
Original Research

The Transcription Factor Rv1453 Regulates the Expression of qor and Confers Resistant to Clofazimine in Mycobacterium tuberculosis

, , , &
Pages 3937-3948 | Published online: 24 Sep 2021

References

  • World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization; 2020.
  • TangS, YaoL, HaoX, et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis. 2015;60(9):1361–1367.25605283
  • XuHB, JiangRH, XiaoHP. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clin Microbiol Infect. 2012;18(11):1104–1110. doi:10.1111/j.1469-0691.2011.03716.x22192631
  • World Health Organization. Global tuberculosis report; 2018.
  • HartkoornRC, UplekarS, ColeST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979–2981. doi:10.1128/AAC.00037-1424590481
  • ZhangS, ChenJ, CuiP, ShiW, ZhangW, ZhangY. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2015;70(9):2507–2510. doi:10.1093/jac/dkv15026045528
  • AlmeidaD, IoergerT, TyagiS, et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60(8):4590–4599. doi:10.1128/AAC.00753-1627185800
  • YanoT, Kassovska-BratinovaS, TehJS, et al. Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem. 2011;286(12):10276–10287. doi:10.1074/jbc.M110.20050121193400
  • LechartierB, ColeST. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(8):4457–4463. doi:10.1128/AAC.00395-1525987624
  • LuP, HeinekeMH, KoulA, et al. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep. 2015;5:10333. doi:10.1038/srep1033326015371
  • BoltonJL, TrushMA, PenningTM, DryhurstG, MonksTJ. Role of quinones in toxicology. Chem Res Toxicol. 2000;13(3):135–160. doi:10.1021/tx990208210725110
  • OppermannU. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu Rev Pharmacol Toxicol. 2007;47:293–322. doi:10.1146/annurev.pharmtox.47.120505.10531617009925
  • PortéS, ValenciaE, YakovtsevaEA, et al. Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J Biol Chem. 2009;284(25):17194–17205. doi:10.1074/jbc.M109.00180019349281
  • SirakiAG, KlotzLO, KehrerJP. Free radicals and reactive oxygen species. Compr Toxicol. 2018;10:262–294.
  • BardarovS, BardarovSJr, PavelkaMSJr, et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology. 2002;148(Pt 10):3007–3017. doi:10.1099/00221287-148-10-300712368434
  • XuJ, WangB, HuM, et al. Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2017;61(6). doi:10.1128/AAC.00239-17.
  • BelenkyP, YeJD, PorterCB, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015;13(5):968–980. doi:10.1016/j.celrep.2015.09.05926565910
  • DwyerDJ, BelenkyPA, YangJH, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111(20):E2100–E2109. doi:10.1073/pnas.140187611124803433
  • HeikalA, HardsK, CheungC-Y, et al. Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. J Antimicrob Chemother. 2016;71(10):2840–2847. doi:10.1093/jac/dkw24427365187
  • MurugesanD, RayPC, BaylissT, et al. 2-Mercapto-Quinazolinones as inhibitors of type II NADH dehydrogenase and Mycobacterium tuberculosis: structure–activity relationships, mechanism of action and absorption, distribution, metabolism, and excretion characterization. ACS Infect Dis. 2018;4(6):954–969. doi:10.1021/acsinfecdis.7b0027529522317
  • CholoMC, MothibaMT, FourieB, AndersonR. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72(2):338–353. doi:10.1093/jac/dkw42627798208
  • ZengS, SoetaertK, RavonF, et al. Isoniazid bactericidal activity involves electron transport chain perturbation. Antimicrob Agents Chemother. 2019;63(3). doi:10.1128/AAC.01841-18.
  • PiccaroG, PietraforteD, GiannoniF, MustazzoluA, FattoriniL. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(12):7527–7533. doi:10.1128/AAC.03169-1425288092
  • van den ElzenPJ, TownsendJ, LeeKY, BedbrookJR. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol. 1985;5(5):299–302. doi:10.1007/BF002062724306921
  • IqbalIK, BajeliS, AkelaAK, KumarA. Bioenergetics of mycobacterium: an emerging landscape for drug discovery. Pathogens. 2018;7(1):24.
  • LamprechtDA, FininPM, RahmanMA, et al. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun. 2016;7:12393. doi:10.1038/ncomms1239327506290
  • ZhengH, LuL, WangB, et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS One. 2008;3(6):e2375. doi:10.1371/journal.pone.000237518584054
  • AkhtarP, SrivastavaS, SrivastavaA, SrivastavaM, SrivastavaBS, SrivastavaR. Rv3303c of Mycobacterium tuberculosis protects tubercle bacilli against oxidative stress in vivo and contributes to virulence in mice. Microbes Infect. 2006;8(14–15):2855–2862. doi:10.1016/j.micinf.2006.09.00417097323
  • SellamuthuS, SinghM, KumarA, SinghSK. Type-II NADH dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Expert Opin Ther Targets. 2017;21(6):559–570. doi:10.1080/14728222.2017.132757728472892
  • BartasM, ČerveňJ, GuziurováS, SlychkoK, PečinkaP. Amino acid composition in various types of nucleic acid-binding proteins. Int J Mol Sci. 2021;22(2):922. doi:10.3390/ijms22020922