180
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Carbapenem-Resistant Klebsiella pneumoniae in Southwest China: Molecular Characteristics and Risk Factors Caused by KPC and NDM Producers

, , , , , , , , & ORCID Icon show all
Pages 3145-3158 | Published online: 13 Aug 2021

References

  • WyresKL, LamMMC, HoltKE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-132055025
  • LiM, WangX, WangJ, et al. Infection-prevention and control interventions to reduce colonisation and infection of intensive care unit-acquired carbapenem-resistant Klebsiella pneumoniae: a 4-year quasi-experimental before-and-after study. Antimicrob Resist Infect Control. 2019;8(1):8. doi:10.1186/s13756-018-0453-730651974
  • HoxhaA, KärkiT, GiambiC, et al. Attributable mortality of carbapenem-resistant Klebsiella pneumoniae infections in a prospective matched cohort study in Italy, 2012–2013. J Hosp Infect. 2016;92(1):61–66. doi:10.1016/j.jhin.2015.06.01826319590
  • NordmannP, PoirelL. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis. 2019;69(Suppl 7):S521–s528. doi:10.1093/cid/ciz82431724045
  • PatersonDL, BonomoRA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686.16223952
  • JacobyGA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–182. Table of Contents. doi:10.1128/CMR.00036-0819136439
  • BushK, JacobyGA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976. doi:10.1128/AAC.01009-0919995920
  • PatelG, BonomoRA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48. doi:10.3389/fmicb.2013.0004823504089
  • ZhuJ, SunL, DingB, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur J Clin Microbiol Infect Dis. 2016;35(4):611–618. doi:10.1007/s10096-016-2578-z26803822
  • ZhengR, ZhangQ, GuoY, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China. Ann Clin Microbiol Antimicrob. 2016;15(1):10. doi:10.1186/s12941-016-0124-626896089
  • WangX, XuX, LiZ, et al. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb Drug Resist. 2014;20(2):144–149. doi:10.1089/mdr.2013.010024199986
  • Escobar PérezJA, Olarte EscobarNM, Castro-CardozoB, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 2013;57(4):1957–1960. doi:10.1128/AAC.01447-1223357776
  • MonteiroJ, InoueFM, LoboAPT, IbanesAS, TufikS, KifferCRV. A major monoclonal hospital outbreak of NDM-1-producing Klebsiella pneumoniae ST340 and the first report of ST2570 in Brazil. Infect Control Hosp Epidemiol. 2019;40(4):492–494. doi:10.1017/ice.2018.33330791966
  • RipabelliG, SammarcoML, SalzoA, ScutellàM, FeliceV, TamburroM. New Delhi metallo-β-lactamase (NDM-1)-producing Klebsiella pneumoniae of sequence type ST11: first identification in a hospital of central Italy. Lett Appl Microbiol. 2020;71(6):652–659. doi:10.1111/lam.1338432916001
  • ZhangY, ZhaoC, WangQ, et al. High prevalence of hypervirulent klebsiella pneumoniae infection in china: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother. 2016;60(10):6115–6120. doi:10.1128/AAC.01127-1627480857
  • ZhangY, JinL, OuyangP, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother. 2020;75(2):327–336. doi:10.1093/jac/dkz44631713615
  • ZhouC, WuQ, HeL, et al. Clinical and molecular characteristics of carbapenem-resistant hypervirulent klebsiella pneumoniae isolates in a tertiary hospital in Shanghai, China. Infect Drug Resist. 2021;14:2697–2706. doi:10.2147/IDR.S32170434285522
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI M100. Wayne PA: CLSI; 2020.
  • LeeK, ChongY, ShinHB, KimYA, YongD, YumJH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001;7(2):88–91. doi:10.1046/j.1469-0691.2001.00204.x11298149
  • SfeirMM, HaydenJA, FauntleroyKA, et al. EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-β-lactamase-producing enterobacteriaceae. J Clin Microbiol. 2019;57(5):e01757–18. doi:10.1128/JCM.01757-1830867235
  • XiangT, ChenC, WenJ, et al. Resistance of klebsiella pneumoniae strains carrying bla (NDM-1) gene and the genetic environment of bla (NDM-1). Front Microbiol. 2020;11:700. doi:10.3389/fmicb.2020.0070032425903
  • CarattoliA, BertiniA, VillaL, FalboV, HopkinsKL, ThrelfallEJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–228. doi:10.1016/j.mimet.2005.03.01815935499
  • PoirelL, DortetL, BernabeuS, NordmannP. Genetic features of blaNDM-1-positive enterobacteriaceae. Antimicrob Agents Chemother. 2011;55(11):5403–5407. doi:10.1128/AAC.00585-1121859933
  • MishraS, UpadhyayS, SenMR, MauryaAP, ChoudhuryD, BhattacharjeeA. Genetic acquisition of NDM gene offers sustainability among clinical isolates of Pseudomonas aeruginosa in clinical settings. PLoS One. 2015;10(1):e0116611. doi:10.1371/journal.pone.011661125635921
  • JiaX, DaiW, MaW, et al. Carbapenem-resistant E. cloacae in Southwest China: molecular analysis of resistance and risk factors for infections caused by NDM-1-producers. Front Microbiol. 2018;9:658. doi:10.3389/fmicb.2018.0065829670607
  • DiancourtL, PassetV, VerhoefJ, GrimontPA, BrisseS. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–4182. doi:10.1128/JCM.43.8.4178-4182.200516081970
  • BradfordPA, UrbanC, MarianoN, ProjanSJ, RahalJJ, BushK. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother. 1997;41(3):563–569. doi:10.1128/AAC.41.3.5639055993
  • MacKenzieFM, ForbesKJ, Dorai-JohnT, AmyesSG, GouldIM. Emergence of a carbapenem-resistant Klebsiella pneumoniae. Lancet. 1997;350(9080):783. doi:10.1016/S0140-6736(05)62567-69298003
  • TacconelliE, CarraraE, SavoldiA, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-329276051
  • RuizJ, RamirezP, VillarrealE, et al. Effect of pharmacokinetic/pharmacodynamic ratio on tigecycline clinical response and toxicity in critically ill patients with multidrug-resistant Gram-negative infections. SAGE Open Med. 2020;8:2050312120958897. doi:10.1177/205031212095889732999720
  • ZhangQ, WangJ, LiuH, MaW, ZhouS, ZhouJ. Risk factors for tigecycline-induced hypofibrinogenaemia. J Clin Pharm Ther. 2020;45(6):1434–1441. doi:10.1111/jcpt.1325032860258
  • AvedissianSN, LiuJ, RhodesNJ, et al. A review of the clinical pharmacokinetics of polymyxin B. Antibiotics. 2019;8(1):31.
  • ZavasckiAP, NationRL. Nephrotoxicity of polymyxins: is there any difference between colistimethate and polymyxin B?Antimicrob Agents Chemother. 2017;61(3):e02319–16. doi:10.1128/AAC.02319-1627993859
  • GaoL, LvY, LiY. Analysis of the drug resistance of carbapenem-resistant Klebsiella pneumoniae in the China antimicrobial resistance surveillance trial program, 2007–2018. Microb Drug Resist. 2020;26(8):944–950. doi:10.1089/mdr.2019.029932043901
  • ZhangY, WangQ, YinY, et al. Epidemiology of carbapenem-resistant enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother. 2018;62(2):e01882–17. doi:10.1128/AAC.01882-1729203488
  • ZhengB, DaiY, LiuY, et al. Molecular epidemiology and risk factors of carbapenem-resistant Klebsiella pneumoniae infections in Eastern China. Front Microbiol. 2017;8:1061. doi:10.3389/fmicb.2017.0106128659886
  • KumudunieWGM, WijesooriyaLI, NamalieKD, Sunil-ChandraNP, WijayasingheYS. Epidemiology of multidrug-resistant enterobacteriaceae in Sri Lanka: first evidence of bla(KPC) harboring Klebsiella pneumoniae. J Infect Public Health. 2020;13(9):1330–1335. doi:10.1016/j.jiph.2020.04.01032439355
  • Munoz-PriceLS, PoirelL, BonomoRA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–796. doi:10.1016/S1473-3099(13)70190-723969216
  • LeeCR, LeeJH, ParkKS, KimYB, JeongBC, LeeSH. Global dissemination of carbapenemase-producing klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.27379038
  • WatanabeM, IyobeS, InoueM, MitsuhashiS. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–151. doi:10.1128/AAC.35.1.1471901695
  • ChuYW, Afzal-ShahM, HouangET, et al. IMP-4, a novel metallo-beta-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother. 2001;45(3):710–714. doi:10.1128/AAC.45.3.710-714.200111181348
  • LeungGH, GrayTJ, CheongEY, HaertschP, GottliebT. Persistence of related bla-IMP-4 metallo-beta-lactamase producing Enterobacteriaceae from clinical and environmental specimens within a burns unit in Australia - a six-year retrospective study. Antimicrob Resist Infect Control. 2013;2(1):35. doi:10.1186/2047-2994-2-3524345195
  • FengW, ZhouD, WangQ, et al. Dissemination of IMP-4-encoding pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital. Sci Rep. 2016;6(1):33419. doi:10.1038/srep3341927641711
  • Kizny GordonA, PhanHTT, LipworthSI, et al. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother. 2020;75(4):873–882. doi:10.1093/jac/dkz52631960024
  • ChenZ, WangY, TianL, et al. First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microb Drug Resist. 2015;21(2):167–170. doi:10.1089/mdr.2014.008725389598
  • VillaL, García-FernándezA, FortiniD, CarattoliA. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010;65(12):2518–2529. doi:10.1093/jac/dkq34720935300
  • ZhangR, LiuL, ZhouH, et al. Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98–106. doi:10.1016/j.ebiom.2017.04.03228479289
  • YoonEJ, KangDY, YangJW, et al. New Delhi Metallo-beta-lactamase-producing enterobacteriaceae in South Korea between 2010 and 2015. Front Microbiol. 2018;9:571. doi:10.3389/fmicb.2018.0057129651277
  • WangY, TongMK, ChowKH, et al. Occurrence of highly conjugative incx3 epidemic plasmid carrying bla (NDM) in enterobacteriaceae isolates in geographically widespread areas. Front Microbiol. 2018;9:2272. doi:10.3389/fmicb.2018.0227230294321
  • HoPL, LiZ, LoWU, et al. Identification and characterization of a novel incompatibility group X3 plasmid carrying bla NDM-1 in enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Microb Infect. 2012;1(11):e39. doi:10.1038/emi.2012.37
  • SugawaraY, AkedaY, SakamotoN, et al. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar. PLoS One. 2017;12(9):e0184720. doi:10.1371/journal.pone.018472028910381
  • KimJS, JinYH, ParkSH, et al. Horizontal transfer of bla(NDM-1)-carrying IncX3 plasmid between carbapenem-resistant enterobacteriaceae in a single patient. J Infect. 2020;81(5):816–846. doi:10.1016/j.jinf.2020.07.013
  • ChoudhuryNA, PaulD, ChakravartyA, BhattacharjeeA, Dhar ChandaD. IncX3 plasmid mediated occurrence of bla(NDM-4) within Escherichia coli ST448 from India. J Infect Public Health. 2018;11(1):111–114. doi:10.1016/j.jiph.2017.06.00828676284
  • ShenP, WeiZ, JiangY, et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among enterobacteriaceae in China. Antimicrob Agents Chemother. 2009;53(10):4333–4338. doi:10.1128/AAC.00260-0919620332
  • LuoY, YangJ, YeL, et al. Characterization of KPC-2-producing Escherichia coli, Citrobacter freundii, Enterobacter cloacae, Enterobacter aerogenes, and Klebsiella oxytoca isolates from a Chinese hospital. Microb Drug Resist. 2014;20(4):264–269. doi:10.1089/mdr.2013.015024433026
  • CaiJC, ZhangR, HuYY, ZhouHW, ChenGX. Emergence of Escherichia coli sequence type 131 isolates producing KPC-2 carbapenemase in China. Antimicrob Agents Chemother. 2014;58(2):1146–1152. doi:10.1128/AAC.00912-1324323475
  • WailanAM, PatersonDL, KennedyK, IngramPR, BursleE, SidjabatHE. Genomic characteristics of NDM-producing enterobacteriaceae isolates in Australia and their blaNDM genetic contexts. Antimicrob Agents Chemother. 2016;60(1):136–141. doi:10.1128/AAC.01243-1526482302
  • WailanAM, SidjabatHE, YamWK, et al. Mechanisms involved in acquisition of blaNDM genes by IncA/C2 and IncFIIY plasmids. Antimicrob Agents Chemother. 2016;60(7):4082–4088. doi:10.1128/AAC.00368-1627114281
  • RussoTA, MarrCM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):e00001–19. doi:10.1128/CMR.00001-1931092506
  • ZhangS, ZhangX, WuQ, et al. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control. 2019;8(1):166. doi:10.1186/s13756-019-0615-231673355
  • RussoTA, OlsonR, FangCT, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56(9):e00776–18. doi:10.1128/JCM.00776-1829925642
  • WeiDD, WanLG, DengQ, LiuY. Emergence of KPC-producing Klebsiella pneumoniae hypervirulent clone of capsular serotype K1 that belongs to sequence type 11 in Mainland China. Diagn Microbiol Infect Dis. 2016;85(2):192–194. doi:10.1016/j.diagmicrobio.2015.03.01227049969
  • FengY, LuY, YaoZ, ZongZ. Carbapenem-resistant hypervirulent Klebsiella pneumoniae of sequence type 36. Antimicrob Agents Chemother. 2018;62(7):e02644–17. doi:10.1128/AAC.02644-1729712659
  • ZhangR, LinD, ChanEW, GuD, ChenGX, ChenS. Emergence of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob Agents Chemother. 2016;60(1):709–711. doi:10.1128/AAC.02173-1526574010
  • FuL, TangL, WangS, et al. Co-location of the bla(KPC-2), bla(CTX-M-65), rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate. Microb Pathog. 2018;124:301–304. doi:10.1016/j.micpath.2018.08.05530165112
  • ChenL, MathemaB, ChavdaKD, DeLeoFR, BonomoRA, KreiswirthBN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–696. doi:10.1016/j.tim.2014.09.00325304194
  • Di TellaD, TamburroM, GuerrizioG, FanelliI, SammarcoML, RipabelliG. Molecular epidemiological insights into colistin-resistant and carbapenemases-producing clinical Klebsiella pneumoniae isolates. Infect Drug Resist. 2019;12:3783–3795. doi:10.2147/IDR.S22641631819559
  • LiuJ, YuJ, ChenF, et al. Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China. Eur J Clin Microbiol Infect Dis. 2018;37(2):293–299. doi:10.1007/s10096-017-3131-429282569
  • GaoH, LiuY, WangR, WangQ, JinL, WangH. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine. 2020;51:102599. doi:10.1016/j.ebiom.2019.10259931911273
  • AkgulF, BozkurtI, SunbulM, EsenS, LeblebiciogluH. Risk factors and mortality in the Carbapenem-resistant Klebsiella pneumoniae infection: case control study. Pathog Glob Health. 2016;110(7–8):321–325. doi:10.1080/20477724.2016.125497627903130
  • JiaoY, QinY, LiuJ, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: a retrospective study. Pathog Glob Health. 2015;109(2):68–74. doi:10.1179/2047773215Y.000000000425707874
  • ZhangY, GuoLY, SongWQ, WangY, DongF, LiuG. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. BMC Infect Dis. 2018;18(1):248. doi:10.1186/s12879-018-3160-329855274
  • ZhengX, WangJ-F, XuW-L, XuJ, HuJ. Clinical and molecular characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae bloodstream infections in the intensive care unit. Antimicrob Resist Infect Control. 2017;6(1):102. doi:10.1186/s13756-017-0256-229026535
  • FalagasME, RafailidisPI, KofteridisD, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60(5):1124–1130. doi:10.1093/jac/dkm35617884829
  • HuY, PingY, LiL, XuH, YanX, DaiH. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients. J Infect Dev Ctries. 2016;10(3):208–213. doi:10.3855/jidc.669727031451