198
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Estimating the Long-Term Epidemiological Trends and Seasonality of Hemorrhagic Fever with Renal Syndrome in China

, , , , ORCID Icon, & show all
Pages 3849-3862 | Published online: 21 Sep 2021

References

  • Centers for Disease Control and Prevention. Hemorrhagic fever with renal syndrome (HFRS). Available from: https://www.cdc.gov/hantavirus/hfrs/index.html. Accessed 810, 2021.
  • ZouLX, ChenMJ, SunL. Haemorrhagic fever with renal syndrome: literature review and distribution analysis in China. Int J Infect Dis. 2016;43:95–100. doi:10.1016/j.ijid.2016.01.00326791541
  • KangC, KimJI, LeeJ, et al. Human infection with Seoul orthohantavirus in Korea, 2019. PLoS Negl Trop Dis. 2021;15(2):e0009168. doi:10.1371/journal.pntd.000916833617577
  • TkachenkoEA, IshmukhametovAA, DzagurovaTK, et al. Hemorrhagic fever with renal syndrome, Russia. Emerg Infect Dis. 2019;25(12):2325–2328. doi:10.3201/eid2512.18164931742540
  • WuG, XiaZ, WangF, et al. Investigation on risk factors of haemorrhagic fever with renal syndrome (HFRS) in Xuancheng City in Anhui Province, Mainland China. Epidemiol Infect. 2020;148:e248. doi:10.1017/S095026882000234433004084
  • WangY, XuC, WuW, et al. Time series analysis of temporal trends in hemorrhagic fever with renal syndrome morbidity rate in China from 2005 to 2019. Sci Rep. 2020;10(1):9609. doi:10.1038/s41598-020-66758-432541833
  • ShiF, YuC, YangL, et al. Exploring the dynamics of hemorrhagic fever with renal syndrome incidence in East China through seasonal autoregressive integrated moving average models. Infect Drug Resist. 2020;13:2465–2475. doi:10.2147/IDR.S25003832801786
  • SunW, LiuX, LiW, MaoZ, SunJ, LuL. Effects and interaction of meteorological factors on hemorrhagic fever with renal syndrome incidence in Huludao City, northeastern China, 2007–2018. PLoS Negl Trop Dis. 2021;15(3):e0009217. doi:10.1371/journal.pntd.000921733764984
  • TianH, TieWF, LiH, et al. Orthohantaviruses infections in humans and rodents in Baoji, China. PLoS Negl Trop Dis. 2020;14(10):e0008778. doi:10.1371/journal.pntd.000877833075097
  • WangQ, YueM, YaoP, et al. Epidemic trend and molecular evolution of HV family in the main hantavirus epidemic areas from 2004 to 2016, in P.R. China. Front Cell Infect Microbiol. 2020;10:584814. doi:10.3389/fcimb.2020.58481433614521
  • WangY, XuC, LiY, et al. An advanced data-driven hybrid model of SARIMA-NNNAR for tuberculosis incidence time series forecasting in Qinghai Province, China. Infect Drug Resist. 2020;13:867–880. doi:10.2147/IDR.S23285432273731
  • ZhangYQ, LiXX, LiWB, et al. Analysis and prediction of tuberculosis registration rates in Henan Province, China: an exponential smoothing model study. Infect Dis Poverty. 2020;9(1):123. doi:10.1186/s40249-020-00742-y32867846
  • LiZ, WangZ, SongH, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Infect Drug Resist. 2019;12:1011–1020. doi:10.2147/idr.s19041831118707
  • HeF, HuZJ, ZhangWC, CaiL, CaiGX, AoyagiK. Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan. Sci Rep. 2017;7(1):7192. doi:10.1038/s41598-017-07475-328775299
  • WangYW, ShenZZ, JiangY. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS One. 2018;13(9):e0201987. doi:10.1371/journal.pone.020198730180159
  • LiuQ, LiZ, JiY, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311–2322. doi:10.2147/idr.s20780931440067
  • GouF, LiuX, HeJ, et al. Different responses of weather factors on hand, foot and mouth disease in three different climate areas of Gansu, China. BMC Infect Dis. 2018;18(1):15. doi:10.1186/s12879-017-2860-429310596
  • LiangF, GuanP, WuW, HuangD. Forecasting influenza epidemics by integrating internet search queries and traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to 2015. PeerJ. 2018;6:e5134. doi:10.7717/peerj.513429967755
  • ZhengYL, ZhangLP, ZhangXL, WangK, ZhengYJ. Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PLoS One. 2015;10(3):e0116832. doi:10.1371/journal.pone.011683225760345
  • TaylorJW. Short-term electricity demand forecasting using double seasonal exponential smoothing. J Oper Res Soc. 2003;54(8):799–805. doi:10.1057/palgrave.jors.2601589
  • LiveraAMD, HyndmanRJ. Forecasting time series with complex seasonal patterns using exponential smoothing. J Am Stat Assoc. 2011;106(496):1513–1527. doi:10.1198/jasa.2011.tm09771
  • RyouJ, LeeHI, YooYJ, et al. Prevalence of hantavirus infection in wild rodents from five provinces in Korea, 2007. J Wildl Dis. 2011;47(2):427–432. doi:10.7589/0090-3558-47.2.42721441196
  • SakizadehM. Spatiotemporal variations and characterization of the chronic cancer risk associated with benzene exposure. Ecotoxicol Environ Saf. 2019;182:109387. doi:10.1016/j.ecoenv.2019.10938731302332
  • CherrieMPC, NicholsG, IaconoGL, SarranC, HajatS, FlemingLE. Pathogen seasonality and links with weather in England and Wales: a big data time series analysis. BMC Public Health. 2018;18(1):1067. doi:10.1186/s12889-018-5931-630153803
  • BarrelaR, AmadoC, LoureiroD, MamadeA. Data reconstruction of flow time series in water distribution systems – a new method that accommodates multiple seasonality. J Hydroinform. 2017;19(1–2):238–250. doi:10.2166/hydro.2016.192
  • JacekB, GrzegorzM, BeataS, WadimS. Multi-seasonality in the TBATS model using demand for electric energy as a case study. Eco Comput Eco Cyb. 2018;52(1):229–246.
  • ZhengA, FangQ, ZhuY, JiangC, JinF, WangX. An application of ARIMA model for predicting total health expenditure in China from 1978–2022. J Glob Health. 2020;10(1):010803. doi:10.7189/jogh.10.01080332257167
  • TianCW, WangH, LuoXM. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Epidemiol Infect. 2019;147:e82. doi:10.1017/S095026881800362X30868999
  • ChenY, LengK, LuY, et al. Epidemiological features and time-series analysis of influenza incidence in urban and rural areas of Shenyang, China, 2010–2018. Epidemiol Infect. 2020;148:e29. doi:10.1017/S095026882000015132054544
  • BartholomewD, BoxGEP, JenkinsGM. Time Series Analysis: Forecasting and Control. 5th ed. Hoboken, New Jersey: John Wiley and Sons Inc.; 2015:14.
  • WangY, XuC, YaoS, ZhaoY. Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced α-Sutte Indicator. Epidemiol Infect. 2020;148:e236. doi:10.1017/s095026882000237x33012300
  • Help-IBM SPSS Statistics. Specifying options for the expert modeler. Available from: http://127.0.0.1:52807/help/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fspss%2Fbase%2Fovervw_auto_0.htm. Accessed 810, 2021.
  • WangY, XuC, YaoS, et al. Estimating the prevalence and mortality of coronavirus disease 2019 (COVID-19) in the USA, the UK, Russia, and India. Infect Drug Resist. 2020;13:3335–3350. doi:10.2147/idr.s26529233061481
  • GuanP, WuW, HuangD. Trends of reported human brucellosis cases in mainland China from 2007 to 2017: an exponential smoothing time series analysis. Environ Health Prev Med. 2018;23(1):23. doi:10.1186/s12199-018-0712-529921215
  • ArmitageP, BerryG, MatthewsJNS. Statistical Methods in Medical Research. 4th ed. London: Matthews Blackwell Publishers; 2001:127.
  • HyndmanR, AthanasopoulosG, BergmeirC, et al. Forecast: forecasting functions for time series and linear models. Available from: https://cranr-projectorg/web/packages/forecast. Accessed 810, 2021.
  • FerozeN. Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models. Chaos Solitons Fractals. 2020;140:110196. doi:10.1016/j.chaos.2020.11019632834662
  • LiuQ, LiuX, JiangB, YangW. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218. doi:10.1186/1471-2334-11-21821838933
  • WangT, LiuJ, ZhouY, et al. Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005–2014. BMC Infect Dis. 2016;16:69. doi:10.1186/s12879-016-1404-726852019
  • WangT, ZhouY, WangL, HuangZ, CuiF, ZhaiS. Using an autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004–2014. Jpn J Infect Dis. 2016;69(4):279–284. doi:10.7883/yoken.JJID.2014.56726370428
  • LiQ, GuoNN, HanZY, et al. Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome. Am J Trop Med Hyg. 2012;87(2):364–370. doi:10.4269/ajtmh.2012.11-047222855772
  • QiC, ZhangD, ZhuY, et al. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. BMC Med Res Methodol. 2020;20(1):243. doi:10.1186/s12874-020-01130-832993517
  • KeG, HuY, HuangX, et al. Epidemiological analysis of hemorrhagic fever with renal syndrome in China with the seasonal-trend decomposition method and the exponential smoothing model. Sci Rep. 2016;6:39350. doi:10.1038/srep3935027976704
  • WuW, GuoJ, AnS, et al. Comparison of two hybrid models for forecasting the incidence of hemorrhagic fever with renal syndrome in Jiangsu Province, China. PLoS One. 2015;10(8):e0135492. doi:10.1371/journal.pone.013549226270814
  • PaoHT. Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy. 2009;34(10):1438–1446. doi:10.1016/j.energy.2009.04.026
  • WangY, XuC, RenJ, et al. Secular seasonality and trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-seasonal framework. Infect Drug Resist. 2020;13:733–747. doi:10.2147/IDR.S23822532184635
  • ZhangS, DiaoM, YuW, PeiL, LinZ, ChenD. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: a data-driven analysis. Int J Infect Dis. 2020;93:201–204. doi:10.1016/j.ijid.2020.02.03332097725
  • YangL, BiZW, KouZQ, et al. Time-series analysis on human brucellosis during 2004–2013 in Shandong Province, China. Zoonoses Public Health. 2015;62(3):228–235. doi:10.1111/zph.1214525043064
  • ZhangX, ZhangT, PeiJ, LiuY, LiX, Medrano-GraciaP. Time series modelling of syphilis incidence in China from 2005 to 2012. PLoS One. 2016;11(2):e0149401. doi:10.1371/journal.pone.014940126901682
  • CortesF, Turchi MartelliCM, Arraes de Alencar XimenesR, et al. Time series analysis of dengue surveillance data in two Brazilian cities. Acta Trop. 2018;182:190–197. doi:10.1016/j.actatropica.2018.03.00629545150
  • WangK, SongW, LiJ, LuW, YuJ, HanX. The use of an autoregressive integrated moving average model for prediction of the incidence of dysentery in Jiangsu, China. Asia Pac J Public Health. 2016;28(4):336–346. doi:10.1177/101053951664515327106828
  • WangH, TianCW, WangWM, LuoXM. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 2018;146(8):935–939. doi:10.1017/S095026881800111529708082
  • YuC, XuC, LiY, YaoS, BaiY. Time series analysis and forecasting of the hand-foot-mouth disease morbidity in China using an advanced exponential smoothing state space TBATS model. Infect Drug Resist. 2021;14:2809–2821. doi:10.2147/idr.s30465234321897
  • ZhangSQ, ZhouZH. Flexible transmitter network. 2020.
  • FiorucciJA, PellegriniTR, LouzadaF, PetropoulosF, KoehlerAB. Models for optimising the theta method and their relationship to state space models. Int J Forecasting. 2016;32(4):1151–1161. doi:10.1016/j.ijforecast.2016.02.005
  • ZhaoY, LiM, YuanS. Analysis of transmission and control of tuberculosis in Mainland China, 2005–2016, based on the age-structure mathematical model. Int J Environ Res Public Health. 2017;14(10):1192. doi:10.3390/ijerph14101192
  • JoshiYP, KimEH, CheongHK. The influence of climatic factors on the development of hemorrhagic fever with renal syndrome and leptospirosis during the peak season in Korea: an ecologic study. BMC Infect Dis. 2017;17(1):406. doi:10.1186/s12879-017-2506-628592316
  • ZouLX, SunL. Analysis of hemorrhagic fever with renal syndrome using wavelet tools in Mainland China, 2004–2019. Front Public Health. 2020;8:571984. doi:10.3389/fpubh.2020.57198433335877
  • ZhangYH, GeL, LiuL, et al. The epidemic characteristics and changing trend of hemorrhagic fever with renal syndrome in Hubei Province, China. PLoS One. 2014;9(3):e92700. doi:10.1371/journal.pone.009270024658382
  • XiaoH, TianHY, CazellesB, et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl Trop Dis. 2013;7(6):e2260. doi:10.1371/journal.pntd.000226023755316
  • WuX, LuY, ZhouS, ChenL, XuB. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016;86:14–23. doi:10.1016/j.envint.2015.09.00726479830
  • WeiY, WangY, LiX, et al. Meteorological factors and risk of hemorrhagic fever with renal syndrome in Guangzhou, southern China, 2006–2015. PLoS Negl Trop Dis. 2018;12(6):e0006604. doi:10.1371/journal.pntd.000660429949572
  • HofmannJ, WeissS, KuhnsM, ZinkeA, HeinsbergerH, KrugerDH. Importation of human seoul virus infection to Germany from Indonesia. Emerg Infect Dis. 2018;24(6):1099–1102. doi:10.3201/eid2406.17204429774860
  • JiangF, WangL, WangS, et al. Meteorological factors affect the epidemiology of hemorrhagic fever with renal syndrome via altering the breeding and hantavirus-carrying states of rodents and mites: a 9 years’ longitudinal study. Emerg Microbes Infect. 2017;6(11):e104. doi:10.1038/emi.2017.9229184158
  • JiangF, ZhangZ, DongL, et al. Prevalence of hemorrhagic fever with renal syndrome in Qingdao City, China, 2010–2014. Sci Rep. 2016;6:36081. doi:10.1038/srep3608127786303
  • KimJH, CheongHK. Increasing number of scarlet fever cases, South Korea, 2011–2016. Emerg Infect Dis. 2018;24(1):172–173. doi:10.3201/eid2401.17102729260684
  • LiCP, CuiZ, LiSL, et al. Association between hemorrhagic fever with renal syndrome epidemic and climate factors in Heilongjiang Province, China. Am J Trop Med Hyg. 2013;89(5):1006–1012. doi:10.4269/ajtmh.12-047324019443
  • WangL, WangT, CuiF, et al. Hemorrhagic fever with renal syndrome, Zibo City, China, 2006–2014. Emerg Infect Dis. 2016;22(2):274–276.26812444
  • LiangW, GuX, LiX, et al. Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005–2016. Sci Rep. 2018;8(1):749. doi:10.1038/s41598-017-18819-429335595
  • WuH, WangX, XueM, et al. Spatial-temporal characteristics and the epidemiology of haemorrhagic fever with renal syndrome from 2007 to 2016 in Zhejiang Province, China. Sci Rep. 2018;8(1):10244. doi:10.1038/s41598-018-28610-829980717
  • ZhangWY, GuoWD, FangLQ, et al. Climate variability and hemorrhagic fever with renal syndrome transmission in Northeastern China. Environ Health Perspect. 2010;118(7):915–920. doi:10.1289/ehp.090150420142167