126
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland – Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein

, &
Pages 4601-4610 | Published online: 04 Nov 2021

References

  • Adeolu M, Alnajar S, Naushad S, et al. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–5599.27620848
  • Moehring R, Mahlen S. Infections due to Serratia species; 2020. Available from: www.uptodate.com/contents/infections-due-to-serratia-species. Accessed October 5, 2021.
  • Morillo A, Gonzalez V, Aguayo J, et al. A six-month Serratia marcescens outbreak in a neonatal intensive care unit. Enferm Infect Microbiol Clin. 2016;34:645–651. doi:10.1016/j.eimc.2016.01.006
  • Attman E, Korhonen P, Tammela O, et al. A Serratia marcescens outbreak in a neonatal intensive care unit was successfully managed by rapid hospital hygiene interventions and screening. Acta Paediatr. 2018;107:425–429. doi:10.1111/apa.1413229068091
  • Escribano E, Saralegui C, Moles L, et al. Influence of a Serratia marcescens outbreak on the gut microbiota establishment process in low-weight preterm neonates. PLoS One. 2019;14(5):e0216581. doi:10.1371/journal.pone.021658131112570
  • List of prokaryotic names with standing in nomenclature (LPSN). Genus Serratia. Available from: https://lpsn.dsmz.de/genus/serratia. Accessed October 5, 2021.
  • Khanna A, Khanna M, Aggarwal A. Serratia marcescens – a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J Clin Diagn Res. 2013;7(2):243–246.23543704
  • Kim EJ, Park WB, Yoon J-K, et al. Outbreak investigation of Serratia marcescens neurosurgical site infections associated with a contaminated shaving razors. Antimicrob Res Infect Control. 2020;9:64. doi:10.1186/s13756-020-00725-6
  • Sandner-Miranda L, Vinuesa P, Cravioto A, et al. The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Front Microbiol. 2018;9:828. doi:10.3389/fmicb.2018.0082829867787
  • Deng Y, Bao X, Ji L, et al. Resistance integrons: class 1, 2 and 3. integrons. Ann Clin Microbiol Antimicrob. 2015;14:45. doi:10.1186/s12941-015-0100-626487554
  • Kaushik M, Kumar S, Kapoor RK, et al. Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents. 2018;51:167–176. doi:10.1016/j.ijantimicag.2017.10.00429038087
  • Pormohammad A, Pouriran R, Azimi H, et al. Prevalence of integron classes in Gram-negative clinical isolated bacteria in Iran: a systematic review and meta-analysis. Iran J Basic Med Sci. 2019;22:118–127.30834075
  • Integrall. Available from: http://integrall.bio.ua.pt. Accessed October 5, 2021.
  • Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. 2006;4:608–620. doi:10.1038/nrmicro146216845431
  • White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother. 2001;45:2658–2661. doi:10.1128/AAC.45.9.2658-2661.200111502548
  • Crowley D, Cryan B, Lucey B. First detection of a class 2 integron among clinical isolates of Serratia marcescens. Br J Biomed Sci. 2008;65(2):86–89. doi:10.1080/09674845.2008.1173280319055111
  • Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-β-lactamase gene blaIMP. Antimicrob Agents Chemother. 1995;39:1612–1615. doi:10.1128/AAC.39.7.16127492116
  • Collis CM, Kim M-J, Partridge SR, Stokes HW, Hall RM. Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol. 2002;184:3017–3026. doi:10.1128/JB.184.11.3017-3026.200212003943
  • Correia M, Boavida F, Grosso F, et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2003;47:2838–2843. doi:10.1128/AAC.47.9.2838-2843.200312936982
  • Izdebski R, Baraniak A, Żabicka D, et al. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages. J Antimicrob Chemother. 2018;73:2675–2681. doi:10.1093/jac/dky25729986025
  • Singhal N, Kumar M, Kanaujia PK, et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791. doi:10.3389/fmicb.2015.0079126300860
  • Su J, Shi L, Yang L, et al. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS Microbiol Lett. 2006;254:75–80. doi:10.1111/j.1574-6968.2005.00025.x16451182
  • Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12:83–88. doi:10.1038/nm134716369542
  • Samonis G, Vardakas KZ, Maraki S, et al. Resistance phenotypes and susceptibility of contemporary Serratia isolates in the university hospital of Crete, Greece. Infect Dis. 2017;49:847–853. doi:10.1080/23744235.2017.1361546
  • Ferreira RL, Rezende GS, Damas MSF, et al. Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front Microbiol. 2020;11:956. doi:10.3389/fmicb.2020.0095632670210
  • Sader HS, Castanheira M, Duncan LR, et al. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States medical centers stratified by infection type: results from the International Network for Optimal Resistance Monitoring (NFORM) surveillance program, 2015–2016. Diagn Microbiol Infect Dis. 2018;92:69–74.29789189
  • Liou BH, Duh RW, Lin YT, et al. Taiwan Surveillance of Antimicrobial Resistance (TSAR) Hospitals. A multicenter surveillance of antimicrobial resistance in Serratia marcescens in Taiwan. J Microbiol Immunol Infect. 2014;47:387–393. doi:10.1016/j.jmii.2013.04.00323751769
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints – bacteria v 11.0. Available from: https://eucast.org/ast_of_bacteria. Accessed October 5, 2021.
  • El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9(1):868–885. doi:10.1080/22221751.2020.175413332284036
  • Dybowski BA, Zapała P, Bres-Niewada E, et al. Catheter-associated bacterial flora in patients with benign prostatic hyperplasia: shift in antimicrobial susceptibility pattern. BMC Infect Dis. 2018;18:1–7. doi:10.1186/s12879-018-3507-929291713
  • Michno M, Sydor A, Wałaszek M, et al. Microbiology and drug resistance of pathogens in patients hospitalized at the nephrology department in the south of Poland. Pol J Microbiol. 2018;67:517–524. doi:10.21307/pjm-2018-06130550238
  • Hornsey M, Ellington MJ, Doumith M, Hudson S, Livermore DM, Woodford N. Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome. J Antimicrob Chemother. 2010;65:479–482. doi:10.1093/jac/dkp47520051474
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011;18:268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Xia W, Xu T, Qin T, et al. Characterization of integrons and novel cassette arrays in bacteria from clinical isolates in China, 2000–2014. J Biomed Res. 2016;30(4):292–303.27533938
  • Nielsen TK, Browne PD, Hansen LH. Mobilization of antibiotic resistance genes differ by resistance mechanism. bioRxiv. 2021. doi:10.1101/2021.01.10.426126v1
  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. doi:10.1128/CMR.00088-1730068738
  • Kristof K, Toth A, Damjanowa I, et al. Identification of a blaVIM-4 gene in the internationally successful Klebsiella pneumoniae ST11 clone and in a Klebsiella oxytoca strain in Hungary. J Antimicrob Chemother. 2010;65:1303–1305. doi:10.1093/jac/dkq13320410063
  • Patzer J, Toleman MA, Lalitagauri MD, et al. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998–2001). J Antimicrob Chemother. 2004;53:451–456. doi:10.1093/jac/dkh09514749341
  • Kotlarska E, Luczkiewicz A, Pisowacka M, et al. Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ Sci Pollut Res Int. 2015;22:2018–2030. doi:10.1007/s11356-014-3474-725167818
  • Poirel L, Naas T, Le Thomas I, et al. CTX-M-type extended-spectrum β-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob Agents Chemother. 2001;45:3355–3361. doi:10.1128/AAC.45.12.3355-3361.200111709308
  • Barraud O, Casellas M, Dagot C, et al. An antibiotic-resistant class 3 integron in an Enterobacter cloacae isolate from hospital effluent. Clin Microbiol Infect. 2013;19:306–308. doi:10.1111/1469-0691.12186
  • Tchuinte PLS, Stalder T, Venditti S, et al. Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. Int J Antimicrob Agents. 2016;48:431–434. doi:10.1016/j.ijantimicag.2016.06.01827499434
  • Huovinien P, Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001;32:1608–1614. doi:10.1086/32053211340533
  • Kotsakis SD, Miriagou V, Tzelepi E, et al. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother. 2010;54:4864–4871. doi:10.1128/AAC.00771-1020696873
  • Piotrowska M, Dziewit L, Ostrowski R, et al. Molecular characterization and comparative genomics of IncQ-3 plasmids conferring resistance to various antibiotics isolated from a wastewater treatment plant in Warsaw (Poland). Antibiotics. 2020;9:613. doi:10.3390/antibiotics9090613
  • Jones-Dias D, Manageiro V, Ferreira E, et al. Architecture of class 1, 2, and 3 integrons from Gram negative bacteria recovered among fruits and vegetables. Front Microbiol. 2016;7:1400. doi:10.3389/fmicb.2016.0140027679611
  • Jiang Y, Zhou Z, Qian Y, et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother. 2008;61(5):1003–1006. doi:10.1093/jac/dkn06318299311
  • Luque-González P, López-Cerero L, Díaz-de-alba P, Rodríguez-Martínez JM. Association of blaOXA-1, and aac(6ʹ)-Ib-cr with ST405 K. pneumoniae clone. Enferm Infecc Microbiol Clin. 2019;37(6):417–418. doi:10.1016/j.eimc.2018.06.001
  • Poirel L, Carattoli A, Bernabeu S, Bruderer T, Frei R, Nordmann P. A novel IncQ plasmid type harbouring a class 3 integron from Escherichia coli. J Antimicrob Chemother. 2010;65(8):1594–1598. doi:10.1093/jac/dkq16620525990
  • Bonemann G, Stiens M, Puhler A, et al. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother. 2006;50:3075–3080. doi:10.1128/AAC.00378-0616940104