292
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Antimicrobial Resistance and Virulence Factor of Streptococcus dysgalactiae Isolated from Clinical Bovine Mastitis Cases in Northwest China

, ORCID Icon, , , , , , , , & show all
Pages 3519-3530 | Published online: 31 Aug 2021

References

  • GomesF, HenriquesM. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–382. doi:10.1007/s00284-015-0958-826687332
  • SharmaN, RhoGJ, HongYH, et al. Bovine mastitis: an Asian perspective. Asian J Anim Vet Adv. 2012;7(6):454–476. doi:10.3923/ajava.2012.454.476
  • DabeleDT, BorenaBM, AdmasuP, GebremedhinEZ, MaramiLM. Prevalence and risk factors of mastitis and isolation, identification and antibiogram of staphylococcus species from mastitis positive zebu cows in toke kutaye, cheliya, and dendi districts, west shewa zone, Oromia, Ethiopia. Infect Drug Resist. 2021;14:987–998. doi:10.2147/IDR.S29525733737821
  • AbdelsalamM, AshegA, EissaAE. Streptococcus dysgalactiae: an emerging pathogen of fishes and mammals. Int J Vet Sci Med. 2013;1(1):1–6. doi:10.1016/j.ijvsm.2013.04.002
  • LundbergNAK, AspánA, BörjessonS, UnnerstadHE, WallerKP. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. J Dairy Sci. 2016;99(3):2102–2117. doi:10.3168/jds.2015-948726805990
  • BiYL, WangYJ, QinY, et al. Prevalence of bovine mastitis pathogens in bulk tank milk in China. PLoS One. 2016;11(5):e0155621. doi:10.1371/journal.pone.015562127187065
  • GaoJ, BarkemaHW, ZhangLM, et al. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J Dairy Sci. 2017;100(6):4797–4806. doi:10.3168/jds.2016-1233428434736
  • HoganJ, SmithKL. Managing Environmental Mastitis. Vet Clin North Am Food Anim Pract. 2012;28(2):217–224. doi:10.1016/j.cvfa.2012.03.00922664204
  • GüntherM, RöhrleO, HaeufleDFB, SchmittS. Spreading out Muscle Mass within a Hill-Type Model: a Computer Simulation Study. Comput Math Methods Med. 2012;2012:1–13. doi:10.1155/2012/848630
  • YangF, ZhangS, ShangX, et al. Short communication: antimicrobial resistance and virulence genes of Enterococcus faecalis isolated from subclinical bovine mastitis cases in China. J Dairy Sci. 2019;102(1):140–144. doi:10.3168/jds.2018-1457630415850
  • StevensM, PiepersS, De VliegherS. Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J Dairy Sci. 2016;99(4):2896–2903. doi:10.3168/jds.2015-1049626874421
  • VliegherSD, OhnstadI, PiepersS. Management and prevention of mastitis: a multifactorial approach with a focus on milking, bedding and data-management. J Integr Agric. 2018;17(6):1214–1233. doi:10.1016/S2095-3119(17)61893-8
  • ZhangSY, PiepersS, ShanR, et al. Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J Dairy Sci. 2018;101(4):3344–3355. doi:10.3168/jds.2017-1403129397161
  • TianXY, ZhengN, HanRW, et al. Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. Microb Pathog. 2019;131:33–39. doi:10.1016/j.micpath.2019.03.03530940606
  • CalvinhoLF, AlmeidaRA, OliverSP. Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet Microbiol. 1998;61(1–2):93–110. doi:10.1016/S0378-1135(98)00172-29646469
  • LundbergA, NymanA, UnnerstadHE, WallerKP. Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. Acta Vet Scand. 2014;56(1):80. doi:10.1186/s13028-014-0080-025427658
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. 5th ed. Wayne, USA: CLSI standard VET01.Clinical and Laboratory Standards Institute; 2018.
  • KoivulaM, PitkäläA, PyaöräläS, MäntysaariEA. Distribution of bacteria and seasonal and regional effects in a new database for mastitis pathogens in Finland. Acta Agric Scand a Anim Sci. 2007;57(2):89–96. doi:10.1080/09064700701488941
  • LakewM, TolosaT, TigreW. Prevalence and major bacterial causes of bovine mastitis in Asella, South Eastern Ethiopia. Trop Anim Health Prod. 2009;41(7):1525–1530. doi:10.1007/s11250-009-9343-619333772
  • BotrelMA, HaenniM, MorignatE, SulpiceP, MadecJY, CalavasD. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in Dairy Cows in Rhône-Alpes, France. Foodborne Pathog Dis. 2010;7(5):479–487. doi:10.1089/fpd.2009.042519919286
  • RatoMG, BexigaR, FlorindoC, CavacoLM, VilelaCL, Santos-SanchesI. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol. 2013;161(3–4):286–294. doi:10.1016/j.vetmic.2012.07.04322964008
  • YangF, WangQ, WangX, et al. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J Integr Agric. 2016;15(12):2842–2847. doi:10.1016/S2095-3119(16)61368-0
  • MOA. Ministry of Agriculture of the People’s Republic of China. Announcement No.1997 of the Ministry of Agriculture. Ministry of Agriculture of the People’s Republic of China; 2013. Available from:http://www.moa.gov.cn/nybgb/2013/dshiq/201712/t20171227_6126416.htm. Accessed 411, 2021.
  • ChengJ, QuW, BarkemaHW, et al. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci. 2019;102(3):2416–2426. doi:10.3168/jds.2018-1513530639013
  • StogiosPJ, SavchenkoA. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020;29(3):654–669. doi:10.1002/pro.381931899563
  • De OliveiraAP, WattsJL, SalmonSA, AarestrupFM. Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Bovine Mastitis in Europe and the United States. J Dairy Sci. 2000;83(4):855–862. doi:10.3168/jds.S0022-0302(00)74949-610791803
  • HaveriM, SuominenS, RantalaL, Honkanen-BuzalskiT, PyöräläS. Comparison of phenotypic and genotypic detection of penicillin G resistance of Staphylococcus aureus isolated from bovine intramammary infection. Vet Microbiol. 2005;106(1–2):97–102. doi:10.1016/j.vetmic.2004.12.01515737478
  • ParkYK, NhoSW, ShinGW, et al. Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet Microbiol. 2009;136(1–2):76–81. doi:10.1016/j.vetmic.2008.10.00219019569
  • Fernández-AceñeroMJ, Fernández-LópezP. Cutaneous lesions associated with bacteremia by Streptococcus dysgalactiae. J Am Acad Dermatol. 2006;55(5):S91–S92. doi:10.1016/j.jaad.2005.01.09717052543
  • PreezJHD. Bovine mastitis therapy and why it fails: continuing education. J S Afr Vet Assoc. 2000;71(3):201–208. doi:10.4102/jsava.v71i3.71411205172
  • FuldeM, SteinertM, BergmannS. Interaction of streptococcal plasminogen binding proteins with the host fibrinolytic system. Front Cell Infect Microbiol. 2013;3(NOV):85. doi:10.3389/fcimb.2013.0008524319673
  • PancholiV. Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci. 2001;58(7):902–920. doi:10.1007/PL0000091011497239
  • LottenbergR, BroderCC, BoyleMDP, KainSJ, SchroederBL, CurtissR. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol. 1992;174(16):5204–5210. doi:10.1128/jb.174.16.5204-5210.19921322883
  • KaczorekE, MałaczewskaJ, WójcikR, SiwickiAK. Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Vet Res. 2017;13(1):398. doi:10.1186/s12917-017-1322-y29282118
  • AbdelsalamM, FujinoM, EissaAE, ChenSC, WardaM. Expression, genetic localization and phylogenic analysis of NAPlr in piscine Streptococcus dysgalactiae subspecies dysgalactiae isolates and their patterns of adherence. J Adv Res. 2015;6(5):747–755. doi:10.1016/j.jare.2014.05.00526425363
  • CiszewskiM, SzewczykEM. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains. Curr Microbiol. 2017;74(5):650–654. doi:10.1007/s00284-017-1232-z28314902
  • ArmisteadB, WhidbeyC, IyerLM, et al. The cyl Genes Reveal the Biosynthetic and Evolutionary Origins of the Group B Streptococcus Hemolytic Lipid, Granadaene. Front Microbiol. 2020;10:3123–3133. doi:10.3389/fmicb.2019.0312332038561
  • DingYX, ZhaoJL, HeXL, et al. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharm Biol. 2016;54(1):162–167. doi:10.3109/13880209.2015.102529025856704
  • LindahlG, Stålhammar-CarlemalmM, AreschougT. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev. 2005;18(1):102–127. doi:10.1128/CMR.18.1.102-127.200515653821
  • BeigverdiR, JabalameliF, MirsalehianA, et al. Virulence factors, antimicrobial susceptibility and molecular characterization of streptococcus agalactiae isolated from pregnant women. Acta Microbiol Immunol Hung. 2014;61(4):425–434. doi:10.1556/AMicr.61.2014.4.425496971
  • BeckmannC, WaggonerJD, HarrisTO, TamuraGS, RubensCE. Identification of novel adhesins from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun. 2002;70(6):2869–2876. doi:10.1128/IAI.70.6.2869-2876.200212010974
  • JainB, TewariA, BhandariBB, JhalaMK. Antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from cases of bovine subclinical mastitis. Vet Arch. 2012;82(5):423–432.
  • DmitrievA, ShakleinaE, TkáčikováL, MikulaI, TotolianA. Genetic heterogeneity of the pathogenic potentials of human and bovine group B streptococci. Folia Microbiol (Praha). 2002;47(3):291–295. doi:10.1007/BF281765512094741
  • RichardsVP, LangP, Pavinski BitarPD, et al. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infect Genet Evol. 2011;11(6):1263–1275. doi:10.1016/j.meegid.2011.04.01921536150
  • AslamM, DiarraMS, CheckleyS, BohaychukV, MassonL. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int J Food Microbiol. 2012;156(3):222–230. doi:10.1016/j.ijfoodmicro.2012.03.02622520502
  • IwerieborBC, ObiLC, OkohAI. Virulence and antimicrobial resistance factors of Enterococcus spp. isolated from fecal samples from piggery farms in Eastern Cape, South Africa. BMC Microbiol. 2015;15(1):136–146. doi:10.1186/s12866-015-0468-726141237
  • ZhangH, YangF, LiX-P. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China. J Integr Agric. 2020;19(11):2784–2791. doi:10.1016/S2095-3119(20)63185-9