162
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bioinformation Analysis Reveals IFIT1 as Potential Biomarkers in Central Nervous System Tuberculosis

, , , , , , , , & ORCID Icon show all
Pages 35-45 | Published online: 06 Jan 2022

References

  • World Health Organization. Global tuberculosis report 2020. World Health Organization; 2020. Available from: https://apps.who.int/iris/handle/10665/336069. Accessed November 18, 2021. License: CC BY-NC-SA 3.0 IGO.
  • Hayward S, Rustage K, Nellums L, et al. Extrapulmonary tuberculosis among migrants in Europe, 1995 to 2017. J Clin Microbiol Infect. 2020;27(9):1347–e1.
  • Pang Y, An J, Shu W, et al. Epidemiology of extrapulmonary tuberculosis among inpatients, China, 2008–2017. Emerg Infect Dis. 2019;25(3):457–464. doi:10.3201/eid2503.180572
  • Wingfield T, MacPherson P, Cleary P, Ormerod L. High prevalence of TB disease in contacts of adults with extrapulmonary TB. J Thorax. 2018;73(8):785–787. doi:10.1136/thoraxjnl-2017-210202
  • Humphreys A, Abbara A, Williams S, et al. Screening contacts of patients with extrapulmonary TB for latent TB infection. Thorax. 2018;73(3):277–278. doi:10.1136/thoraxjnl-2016-209639
  • Kerkhoff AD, Sossen B, Schutz C, et al. Diagnostic sensitivity of SILVAMP TB-LAM (FujiLAM) point-of-care urine assay for extra-pulmonary tuberculosis in people living with HIV. Eur Respir J. 2020;55(2):1901259. doi:10.1183/13993003.01259-2019
  • Bomanji J, Sharma R, Mittal BR, et al. PET/CT features of extrapulmonary tuberculosis at first clinical presentation: a cross-sectional observational 18F-FDG imaging study across six countries. Eur Respir J. 2020;55(2):1901959. doi:10.1183/13993003.01959-2019
  • Venkatraman N, King T, Bell D, et al. High levels of neurological involvement but low mortality in miliary tuberculosis: a 6-year case-series from the UK. Eur Respir J. 2016;47(5):1578–1581. doi:10.1183/13993003.01958-2015
  • Leonard J. Central nervous system tuberculosis. J Microbiol Spectr. 2017;5(2):5–2.
  • Kilicoglu G, Ozturk-Engin D, Tireli H, et al. Radiological data in microbiologically confirmed central nervous system tuberculosis. Clin Microbiol Infect. 2018;24(10):1109–1110. doi:10.1016/j.cmi.2018.05.024
  • Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK. Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev. 2008;21(2):243–261. doi:10.1128/CMR.00042-07
  • Piermattei A, Migliara G, Di Sante G, et al. Toll-like receptor 2 mediates in vivo pro- and anti-inflammatory effects of mycobacterium tuberculosis and modulates autoimmune encephalomyelitis. Front Immunol. 2016;7:191. doi:10.3389/fimmu.2016.00191
  • O’Connor RA, Li X, Blumerman S, Anderton SM, Noelle RJ, Dalton DK. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 Attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system. J Immunol. 2012;188(5):2093–2101. doi:10.4049/jimmunol.1101118
  • Hsu N-J, Francisco NM, Keeton R, et al. Myeloid and T cell-derived TNF protects against central nervous system tuberculosis. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.00180
  • Blankley S, Graham CM, Turner J, et al. The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis. PLoS One. 2016;11(10):e0162220. doi:10.1371/journal.pone.0162220
  • Ritchie M, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. J Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. J Nature Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6
  • Szklarczyk D, Morris J, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. J Nucleic Acids Res. 2017;45(D1):D362–D368. doi:10.1093/nar/gkw937
  • Reimand J, Isserlin R, Voisin V, et al. Pathway enrichment analysis and visualization of omics data using g: profiler, GSEA, Cytoscape and enrichmentmap. J Nat Protoc. 2019;14(2):482–517. doi:10.1038/s41596-018-0103-9
  • Wang H, Zhu H, Zhu W, et al. Bioinformatic analysis identifies potential key genes in the pathogenesis of turner syndrome. Front Endocrinol. 2020;11:104.
  • Jain A, Goyal MK, Mittal BR, et al. 18FDG-PET is sensitive tool for detection of extracranial tuberculous foci in central nervous system tuberculosis – preliminary observations from a tertiary care center in northern India. J Neurol Sci. 2020;409:116585.
  • Logan C, Mullender C, Mirfenderesky M, et al. Presentations and outcomes of central nervous system TB in a UK cohort: the high burden of neurological morbidity. J Infect. 2020;82(1):90–97.
  • Robertson KR, Oladeji B, Jiang H, et al. Human immunodeficiency virus type 1 and tuberculosis coinfection in multinational, resource-limited settings: increased neurological dysfunction. Clin Infect Dis. 2019;68(10):1739–1746. doi:10.1093/cid/ciy718
  • van Toorn R, Solomons R, Seddon J, Schoeman J. Thalidomide use for complicated central nervous system tuberculosis in children: insights from an observational cohort. J Clin Infect Dis. 2020;72(5):e136–e145.
  • Fleith R, Mears H, Leong X, et al. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA. Nucleic Acids Res. 2018;46(10):5269–5285. doi:10.1093/nar/gky191
  • Katibah G, Lee H, Huizar J, Vogan J, Alber T, Collins KJ. tRNA binding, structure, and localization of the human interferon-induced protein IFIT5. Mol Cell. 2013;49(4):743–750. doi:10.1016/j.molcel.2012.12.015
  • Wathelet M, Moutschen S, Defilippi P, et al. Molecular cloning, full-length sequence and preliminary characterization of a 56-kDa protein induced by human interferons. Eur J Biochem. 1986;155(1):11–17. doi:10.1111/j.1432-1033.1986.tb09452.x
  • Choi Y, Bowman J, Jung JJI. A talented duo: IFIT1 and IFIT3 patrol viral RNA caps. Immunity. 2018;48(3):474–476. doi:10.1016/j.immuni.2018.03.001
  • Zhang J, Chen Y, Lin G, et al. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. Hum Pathol. 2016;52:136–144. doi:10.1016/j.humpath.2016.01.013
  • Zhang L, Wang B, Li L, et al. Antiviral effects of IFIT1 in human cytomegalovirus-infected fetal astrocytes. J Med Virol. 2017;89(4):672–684. doi:10.1002/jmv.24674
  • Li H, Yang L, Wu C, et al. Expression and prognostic value of IFIT1 and IFITM3 in head and neck squamous cell carcinoma. Am J Clin Pathol. 2020;153(5):618–629. doi:10.1093/ajcp/aqz205
  • John SP, Sun J, Carlson RJ, et al. IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Rep. 2018;25(1):95–106.e6. doi:10.1016/j.celrep.2018.09.002
  • Tabellini G, Vairo D, Scomodon O, et al. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol. 2017;140(2):553–564.e4. doi:10.1016/j.jaci.2016.10.051
  • Hare NJ, Chan B, Chan E, Kaufman KL, Britton WJ, Saunders BM. Microparticles released fromMycobacterium tuberculosis-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15. Proteomics. 2015;15(17):3020–3029. doi:10.1002/pmic.201400610
  • Zunt JJC. Tuberculosis of the central nervous system. Neuroinfect Dis. 2018;24:1422–1438.
  • de Oyarzabal E, García-García L, Rangel-Escareño C, et al. Expression of USP18 and IL2RA is increased in individuals receiving latent tuberculosis treatment with isoniazid. J Immunol Res. 2019;2019:1297131. doi:10.1155/2019/1297131