192
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Molecular Characteristics, Antimicrobial Resistance, and Biofilm Formation of Pseudomonas aeruginosa Isolated from Patients with Aural Infections in Shanghai, China

, , , , &
Pages 3637-3645 | Published online: 07 Sep 2021

References

  • Rubin GrandisJ, BranstetterB, YuVL. The changing face of malignant (necrotising) external otitis: clinical, radiological, and anatomic correlations. Lancet Infect Dis. 2004;4(1):34–39. doi:10.1016/s1473-3099(03)00858-214720566
  • Al-AniRM, Al-ZubaidiMI, LafiSA. Profile of aerobic bacteria and their antibiotic sensitivity in chronic suppurative otitis media in Al-Ramadi Teaching Hospital, Ramadi City, Iraq. Qatar Med J. 2021;2021(1):3. doi:10.5339/qmj.2021.333868971
  • ShilpaC, SandeepS, ThanzeemunisaU, PrakashBG, RadhikaS, VirenderS. Current microbiological trends of chronic suppurative otitis media in a Tertiary Care Centre, Mysuru, India. Indian J Otolaryngol Head Neck Surg. 2019;71(Suppl 2):1449–1452. doi:10.1007/s12070-018-1544-831750194
  • SchilderAG, ChonmaitreeT, CrippsAW, et al. Otitis media. Nat Rev Dis Primers. 2016;2(1):16063. doi:10.1038/nrdp.2016.6327604644
  • VerhoeffM, van der VeenEL, RoversMM, SandersEA, SchilderAG. Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol. 2006;70(1):1–12. doi:10.1016/j.ijporl.2005.08.02116198004
  • MittalR, LisiCV, GerringR, et al. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. J Med Microbiol. 2015;64(10):1103–1116. doi:10.1099/jmm.0.00015526248613
  • HuF, ZhuD, WangF, WangM. Current status and trends of antibacterial resistance in China. Clin Infect Dis. 2018;67(suppl_2):S128–s134. doi:10.1093/cid/ciy65730423045
  • MoradaliMF, GhodsS, RehmBH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. doi:10.3389/fcimb.2017.0003928261568
  • SutherlandIW. The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9(5):222–227. doi:10.1016/s0966-842x(01)02012-111336839
  • RyderC, ByrdM, WozniakDJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007;10(6):644–648. doi:10.1016/j.mib.2007.09.01017981495
  • LavertyG, GormanSP, GilmoreBF. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm formation. Pathogens. 2014;3(3):596–632. doi:10.3390/pathogens303059625438014
  • ByrdMS, SadovskayaI, VinogradovE, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 2009;73(4):622–638. doi:10.1111/j.1365-2958.2009.06795.x19659934
  • CampisanoA, SchroederC, SchemionekM, OverhageJ, RehmBH. PslD is a secreted protein required for biofilm formation by Pseudomonas aeruginosa. Appl Environ Microbiol. 2006;72(4):3066–3068. doi:10.1128/aem.72.4.3066-3068.200616598021
  • GhafoorA, JordensZ, RehmBH. Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol. 2013;79(9):2968–2978. doi:10.1128/aem.03666-1223435893
  • TesfaT, MitikuH, SisayM, et al. Bacterial otitis media in sub-Saharan Africa: a systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):225. doi:10.1186/s12879-020-4950-y32183752
  • CurranB, JonasD, GrundmannH, PittT, DowsonCG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004;42(12):5644–5649. doi:10.1128/jcm.42.12.5644-5649.200415583294
  • WayneP; Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed.; 2021:M100.
  • NguyenKV, NguyenTV, NguyenHTT, LeDV. Mutations in the gyrA, parC, and mexR genes provide functional insights into the fluoroquinolone-resistant Pseudomonas aeruginosa isolated in Vietnam. Infect Drug Resist. 2018;11:275–282. doi:10.2147/idr.S14758129535543
  • GorganiN, AhlbrandS, PattersonA, PourmandN. Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents. 2009;34(5):414–418. doi:10.1016/j.ijantimicag.2009.05.01319656662
  • TahaMN, SaafanAE, AhmedyA, El GebalyE, KhairallaAS. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J Microbiol. 2019;57(7):618–625. doi:10.1007/s12275-019-8548-231054133
  • StepanovićS, VukovićD, HolaV, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115(8):891–899. doi:10.1111/j.1600-0463.2007.apm_630.x17696944
  • KhanF, LeeJW, JavaidA, ParkSK, KimYM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathog. 2020;146:104249. doi:10.1016/j.micpath.2020.10424932418905
  • BanarM, EmaneiniM, SatarzadehM, et al. Evaluation of Mannosidase and Trypsin Enzymes effects on Biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS One. 2016;11(10):e0164622. doi:10.1371/journal.pone.016462227736961
  • RathS, DasSR, PadhyRN. Surveillance of bacteria Pseudomonas aeruginosa and MRSA associated with chronic suppurative otitis media. Braz J Otorhinolaryngol. 2017;83(2):201–206. doi:10.1016/j.bjorl.2016.03.00827177975
  • JalalS, CiofuO, HoibyN, GotohN, WretlindB. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2000;44(3):710–712. doi:10.1128/aac.44.3.710-712.200010681343
  • ZowawiHM, SyrmisMW, KiddTJ, et al. Identification of carbapenem-resistant Pseudomonas aeruginosa in selected hospitals of the Gulf Cooperation Council States: dominance of high-risk clones in the region. J Med Microbiol. 2018;67(6):846–853. doi:10.1099/jmm.0.00073029664716
  • KhanM, StapletonF, SummersS, RiceSA, WillcoxMDP. Antibiotic resistance characteristics of Pseudomonas aeruginosa isolated from Keratitis in Australia and India. Antibiotics (Basel). 2020;9(9). doi:10.3390/antibiotics9090600
  • YinS, ChenP, YouB, et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese Burn Center from 2011 to 2016. Front Microbiol. 2018;9:1135. doi:10.3389/fmicb.2018.0113529896186
  • ThiMTT, WibowoD, RehmBHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22):8671. doi:10.3390/ijms21228671
  • AsadpourL. Antimicrobial resistance, biofilm-forming ability and virulence potential of Pseudomonas aeruginosa isolated from burn patients in northern Iran. J Glob Antimicrob Resist. 2018;13:214–220. doi:10.1016/j.jgar.2018.01.01829421318
  • KamaliE, JamaliA, ArdebiliA, EzadiF, MohebbiA. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020;13(1):27. doi:10.1186/s13104-020-4890-z31924268
  • WhiteleyM, BangeraMG, BumgarnerRE, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 2001;413(6858):860–864. doi:10.1038/3510162711677611