140
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Outbreak of Multidrug-Resistant OXA-232-Producing ST15 Klebsiella pneumoniae in a Teaching Hospital in Wenzhou, China

, , ORCID Icon, , , , , , , & show all
Pages 4395-4407 | Published online: 24 Oct 2021

References

  • Pitout JDD, Peirano G, Kock MM, Strydom K-A, Matsumura Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin Microbiol Rev. 2019;33(1):e00102–00119. doi:10.1128/CMR.00102-1931722889
  • de Jonge BLM, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nichols WW. In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother. 2016;60:3163–3169. doi:10.1128/AAC.03042-1526926648
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. In Vitro Activity of Imipenem against Carbapenemase-Positive Enterobacteriaceae Isolates Collected by the SMART Global Surveillance Program from 2008 to 2014. J Clin Microbiol. 2017;55:1638–1649. doi:10.1128/JCM.02316-1628298454
  • Potron A, Rondinaud E, Poirel L, et al. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41(4):325–329. doi:10.1016/j.ijantimicag.2012.11.00723305656
  • Shu L, Dong N, Lu J, et al. Emergence of OXA-232 Carbapenemase-Producing Klebsiella pneumoniae That Carries a pLVPK-Like Virulence Plasmid among Elderly Patients in China. Antimicrob Agents Chemother. 2019;63(3). doi:10.1128/AAC.02246-18
  • Li X, Ma W, Qin Q, et al. Nosocomial spread of OXA-232-producing Klebsiella pneumoniae ST15 in a teaching hospital, Shanghai, China. BMC Microbiol. 2019;19(1):235. doi:10.1186/s12866-019-1609-131660869
  • Yin D, Dong D, Li K, et al. Clonal Dissemination of OXA-232 Carbapenemase-Producing Klebsiella pneumoniae in Neonates. Antimicrob Agents Chemother. 2017;61(8). doi:10.1128/AAC.00385-17
  • Tian D, Pan F, Wang C, Sun Y, Zhang H. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Shanghai. Infect Drug Resist. 2018;11:1935–1943. doi:10.2147/IDR.S17558430498365
  • Weng X, Shi Q, Wang S, Shi Y, Sun D, Yu Y. The Characterization of OXA-232 Carbapenemase-Producing ST437 Klebsiella pneumoniae in China. Can J Infect Dis Med Microbiol. 2020;2020:5626503. doi:10.1155/2020/562650332724486
  • Yang X, Dong N, Chan EW, Zhang R, Chen S. Carbapenem Resistance-Encoding and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83. doi:10.1016/j.tim.2020.04.01232448764
  • Mukherjee S, Naha S, Bhadury P, et al. Emergence of OXA-232-producing hypervirulent Klebsiella pneumoniae ST23 causing neonatal sepsis. J Antimicrob Chemother. 2020;75(7):2004–2006. doi:10.1093/jac/dkaa08032155265
  • Zhao Y, Zhang X, Torres VVL, et al. An Outbreak of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Wenzhou, China. Front Public Health. 2019;7:229. doi:10.3389/fpubh.2019.0022931552210
  • Morrissey I, Oggioni MR, Knight D, et al. Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS One. 2014;9(1):e86669. doi:10.1371/journal.pone.008666924466194
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100 Wayne: PA: Clinical and Laboratory Standards Institute; 2020.
  • Russo TA, Olson R, Fang CT, et al. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J Clin Microbiol. 2018;56(9). doi:10.1128/JCM.00776-18
  • Magiorakos AP, Burns K, Rodriguez Bano J, et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: guidance from the European Centre for Disease Prevention and Control. Antimicrob Resist Infect Control. 2017;6:113. doi:10.1186/s13756-017-0259-z29163939
  • Klein S, Boutin S, Späth I, et al. Acquisition and Transmission of Carbapenemase-Producing (blaKPC-2) Enterobacter cloacae in a Highly Frequented Outpatient Clinic. Clin Infect Dis. 2021;72(5):e158–e161. doi:10.1093/cid/ciaa173433211115
  • Kizny Gordon AE, Mathers AJ, Cheong EYL, et al. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature. Clin Infect Dis. 2017;64(10):1435–1444. doi:10.1093/cid/cix13228200000
  • Pirs M, Cerar Kisek T, Krizan Hergouth V, et al. Successful control of the first OXA-48 and/or NDM carbapenemase-producing Klebsiella pneumoniae outbreak in Slovenia 2014–2016. J Hosp Infect. 2019;101(2):142–149. doi:10.1016/j.jhin.2018.10.02230399389
  • Carter E, Wyer P, Giglio J, et al. Environmental factors and their association with emergency department hand hygiene compliance: an observational study. BMJ Qual Saf. 2016;25(5):372–378. doi:10.1136/bmjqs-2015-004081
  • Ojanperä H, Kanste O, Syrjala H. Hand-hygiene compliance by hospital staff and incidence of health-care-associated infections, Finland. Bull World Health Organ. 2020;98(7):475–483. doi:10.2471/BLT.19.24749432742033
  • Sickbert-Bennett E, DiBiase L, Willis T, Wolak E, Weber D, Rutala W. Reduction of Healthcare-Associated Infections by Exceeding High Compliance with Hand Hygiene Practices. Emerg Infect Dis. 2016;22(9):1628–1630. doi:10.3201/eid2209.15144027532259
  • Snyder BM, Montague BT, Anandan S, et al. Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae. Epidemiol Infect. 2019;147:e137. doi:10.1017/S095026881900025630869056
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–1606. doi:10.1093/jac/dks12122499996
  • Kocer K, Klein S, Hildebrand D, et al. Pitfalls in genotypic antimicrobial susceptibility testing caused by low expression of blaKPC in Escherichia coli. J Antimicrob Chemother. 2021. doi:10.1093/jac/dkab267
  • Thaden J, Pogue J, Kaye K. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant. Enterobacteriaceae Virulence. 2017;8(4):403–416. doi:10.1080/21505594.2016.120783427384881
  • Zhu J, Li Q, Li X, et al. Successful control of the first carbapenem-resistant Klebsiella pneumoniae outbreak in a Chinese hospital 2017–2019. Antimicrob Resist Infect Control. 2020;9(1):91. doi:10.1186/s13756-020-00757-y32571431
  • Abdul Momin MHF, Liakopoulos A, Phee LM, Wareham DW. Emergence and nosocomial spread of carbapenem-resistant OXA-232-producing Klebsiella pneumoniae in Brunei Darussalam. J Glob Antimicrob Resist. 2017;9:96–99. doi:10.1016/j.jgar.2017.02.00828458051
  • Teo JW, Kurup A, Lin RT, Hsien KT. Emergence of clinical Klebsiella pneumoniae producing OXA-232 carbapenemase in Singapore. New Microbes New Infect. 2013;1(1):13–15. doi:10.1002/2052-2975.425356318
  • Jiang Y, Wei Z, Wang Y, Hua X, Feng Y, Yu Y. Tracking a hospital outbreak of KPC-producing ST11 Klebsiella pneumoniae with whole genome sequencing. Clin Microbiol Infect. 2015;21(11):1001–1007. doi:10.1016/j.cmi.2015.07.00126166545
  • Martak D, Meunier A, Sauget M, et al. Comparison of pulsed-field gel electrophoresis and whole-genome-sequencing-based typing confirms the accuracy of pulsed-field gel electrophoresis for the investigation of local Pseudomonas aeruginosa outbreaks. J Hosp Infect. 2020;105(4):643–647. doi:10.1016/j.jhin.2020.06.01332585172
  • Struve C, Roe CC, Stegger M, et al. Mapping the Evolution of Hypervirulent. Klebsiella Pneumoniae mBio. 2015;6(4):e00630.26199326