187
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis

, , , , & ORCID Icon
Pages 4795-4807 | Published online: 15 Nov 2021

References

  • Glaziou P, Falzon D, Floyd K, et al. Global epidemiology of tuberculosis. Semin Respir Crit Care Med. 2013;34:3–16. doi:10.1055/s-0032-133346723460002
  • World Health Organization. Global tuberculosis report 2020. World Health Organization. Available from: https://www.who.int/tb/publications/global_report/TB20_Exec_Sum_20201014.pdf. Accessed November 3, 2021.
  • Pai M, Schito M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis. 2015;211(Suppl 2):S21–28. doi:10.1093/infdis/jiu80325765103
  • Dunn WB, Wilson ID, Nicholls AW, et al. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–2264. doi:10.4155/bio.12.20423046267
  • Schoeman JC. A comparison of four sputum pre-extraction preparation methods for identifying and characterising Mycobacterium tuberculosis using GCxGC-TOFMS metabolomics. J Microbiol Methods. 2012;91:301–311. doi:10.1016/j.mimet.2012.09.00222982125
  • Du Preez I, Loots DT. New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis. 2013;93(330–337). doi:10.1016/j.tube.2013.02.008
  • Zhou A, Ni J, Xu Z, et al. Application of (1)h NMR spectroscopy-based metabolomics to sera of tuberculosis patients. J Proteome Res. 2013;12:4642–4649. doi:10.1021/pr400735923980697
  • Albors-Vaquer A, Rizvi A, Matzapetakis M, et al. Active and prospective latent tuberculosis are associated with different metabolomic profiles: clinical potential for the identification of rapid and non-invasive biomarkers. Emerg Microbes Infect. 2020;9:1131–1139. doi:10.1080/22221751.2020.176073432486916
  • Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis. 2010;90:145–151. doi:10.1016/j.tube.2010.01.00320189456
  • Kolk AH, van Berkel JJ, Claassens MM, et al. Breath analysis as a potential diagnostic tool for tuberculosis. Int J Tuberc Lung Dis. 2012;16:777–782. doi:10.5588/ijtld.11.057622507235
  • Banday KM, Pasikanti KK, Chan EC, et al. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal Chem. 2011;83:5526–5534. doi:10.1021/ac200265g21619052
  • Mahapatra S, Hess AM, Johnson JL, et al. A metabolic biosignature of early response to anti-tuberculosis treatment. BMC Infect Dis. 2014;14:53. doi:10.1186/1471-2334-14-5324484441
  • Hassan MA, Al-Sakkaf K, Shait Mohammed MR, et al. Integration of transcriptome and metabolome provides unique insights to pathways associated with obese breast cancer patients. Front Oncol. 2020;10:804. doi:10.3389/fonc.2020.0080432509585
  • Ruiying C, Zeyun L, Yongliang Y, et al. A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS One. 2020;15:e0232272. doi:10.1371/journal.pone.023227232374740
  • Yang K, Xia B, Wang W, et al. A comprehensive analysis of metabolomics and transcriptomics in cervical cancer. Sci Rep. 2017;7:43353. doi:10.1038/srep4335328225065
  • Dutta NK, Tornheim JA, Fukutani KF, et al. Integration of metabolomics and transcriptomics reveals novel biomarkers in the blood for tuberculosis diagnosis in children. Sci Rep. 2020;10;19527.33177551
  • Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–1083. doi:10.1038/nprot.2011.33521720319
  • Smith CA, Want EJ, O’Maille G, et al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–787. doi:10.1021/ac051437y16448051
  • Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:486–494. doi:10.1093/nar/gky310
  • Jolliffe. I. T.Principal component analysis. J Marketing Res. 2002;87(4):13.
  • Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2010;16(3):119–128. doi:10.1002/cem.695
  • Hastie T. The elements of statistical learning: data mining. J Royal Statistical Soc. 2004;167:192. doi:10.1111/j.1467-985X.2004.298_11.x
  • Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462. doi:10.1093/nar/gkv107026476454
  • Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. doi:10.1093/nar/27.1.299847135
  • Gao J, Tarcea VG, Karnovsky A, et al. Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics. 2010;26:971–973. doi:10.1093/bioinformatics/btq04820139469
  • Weiner J 3rd, Parida SK, Maertzdorf J, et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One. 2012;7:e40221. doi:10.1371/journal.pone.004022122844400
  • Shin JH, Yang JY, Jeon BY, et al. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res. 2011;10:2238–2247. doi:10.1021/pr101054m21452902
  • Song N, Cui Y, Li Z, et al. New targets and cofactors for the transcription factor LrpA from Mycobacterium tuberculosis. DNA Cell Biol. 2016;35(4):167–176. doi:10.1089/dna.2015.304026789099
  • Pandey P, Lynn AM, Bandyopadhyay P. Identification of inhibitors against α-Isopropylmalate Synthase of Mycobacterium tuberculosis using docking-MM/PBSA hybrid approach. Bioinformation. 2017;13(5):144–148. doi:10.6026/9732063001314428690380
  • Collins JM, Siddiqa A, Jones DP, et al. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight. 2020;5:10. doi:10.1172/jci.insight.137131
  • Tientcheu LD, Maertzdorf J, Weiner J, et al. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immun. 2015;16:347–355. doi:10.1038/gene.2015.2126043170
  • Yang DG, Chang YS, Kim YS, et al. Urinary 5-hydroxyindoleacetic acid (5-HIAA) excretion before and during cisplatin chemotherapy in patients with intrathoracic malignancy. Tuberc Respir Dis (Seoul). 1999;46:811–816. doi:10.4046/trd.1999.46.6.811
  • Vrieling F, Alisjahbana B, Sahiratmadja E. Plasma metabonomics in tuberculosis patients at different stages. Chine J Magnetic Resonance. 2016;33(2):224–235.
  • Feng S, Du YQ, Zhang L, et al. Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: application in a pilot study to discriminate patients with tuberculosis. Chin Med J. 2015;128:159–168. doi:10.4103/0366-6999.14918825591556
  • Matsuo M, Terai K, Kameda N, et al. Designation of enzyme activity of glycine-N-acyltransferase family genes and depression of glycine-N-acyltransferase in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2012;420:901–906. doi:10.1016/j.bbrc.2012.03.09922475485
  • Zenil-Vega M, Cerón E, López-Bello G, et al. An association between glycine and insulin levels is observed in patients with pulmonary tuberculosis and type 2 diabetes. Clin Nutr. 2020;39(10):3019–3023. doi:10.1016/j.clnu.2020.02.00732093879
  • Szaflik JP, Majsterek I, Kowalski M, et al. Association between sorbitol dehydrogenase gene polymorphisms and type 2 diabetic retinopathy. Exp Eye Res. 2008;86:647–652. doi:10.1016/j.exer.2008.01.00918289528
  • Song Y, Zhao B, Xu Y, et al. Prognostic significance of branched-chain amino acid transferase 1 and CD133 in triple-negative breast cancer. BMC Cancer. 2020;20:584. doi:10.1186/s12885-020-07070-232571264
  • Jansen RS, Mandyoli L, Hughes R, et al. Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nat Commun. 2020;11(1):1960. doi:10.1038/s41467-020-15876-832327655
  • Seddigh P, Bracht T, Molinier-Frenkel V, et al. Quantitative analysis of proteome modulations in alveolar epithelial type II cells in response to pulmonary aspergillus fumigatus infection. Mol Cell Proteomics. 2017;16:2184–2198. doi:10.1074/mcp.RA117.00007228951444
  • Marchitti SA, Orlicky DJ, Vasiliou V. Expression and initial characterization of human ALDH3B1. Biochem Biophys Res Commun. 2007;356:792–798. doi:10.1016/j.bbrc.2007.03.04617382292
  • Florez-Sampedro L, Brandsma CA, de Vries M, et al. Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep. 2020;10:16980. doi:10.1038/s41598-020-74121-w33046825