502
Views
13
CrossRef citations to date
0
Altmetric
Review

Emerging Aspects of Jumbo Bacteriophages

, , ORCID Icon & ORCID Icon
Pages 5041-5055 | Published online: 30 Nov 2021

References

  • Nazir A, Dong Z, Liu J, et al. Genomic analysis of bacteriophage Xoo-sp13 infecting Xanthomonas oryzae pv. oryzae. Arch Virol. 2021;166(4):1263–1265. doi:10.1007/s00705-021-04985-433585960
  • Cornelissen A, Hardies SC, Shaburova OV, et al. Complete genome sequence of the giant virus OBP and comparative genome analysis of the diverse ϕKZ-related phages. J Virol. 2012;86(3):1844–1852. doi:10.1128/JVI.06330-1122130535
  • Brown JM, LaBarre BA, Hewson I. Characterization of Trichodesmium-associated viral communities in the eastern Gulf of Mexico. FEMS Microbiol Ecol. 2013;84(3):603–613. doi:10.1111/1574-6941.1208823398591
  • Luo Z-H, Yu Y-P, Jost G, Xu W, Huang X-L. Complete genome sequence of a giant Vibrio bacteriophage VH7D. Mar Genomics. 2015;24:293–295. doi:10.1016/j.margen.2015.10.00526476690
  • Kim SG, Jun JW, Giri SS, et al. Isolation and characterisation of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-018-37186-230626917
  • Kim SG, Giri SS, Yun S, et al. Genomic characterization of bacteriophage pEt-SU, a novel phiKZ-related virus infecting Edwardsiella tarda. Arch Virol. 2020;165(1):219–222. doi:10.1007/s00705-019-04432-531630274
  • Weintraub ST, Mohd Redzuan NH, Barton MK, et al. Global proteomic profiling of Salmonella infection by a giant phage. J Virol. 2019;93(5):e01833–01818. doi:10.1128/JVI.01833-1830541839
  • Yuan Y, Gao M. Jumbo bacteriophages: an overview. Front Microbiol. 2017;8:403. doi:10.3389/fmicb.2017.0040328352259
  • Lavysh D, Sokolova M, Minakhin L, et al. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology. 2016;495:185–196. doi:10.1016/j.virol.2016.04.03027236306
  • Koonin EV, Yutin N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv Virus Res. 2019;103:167–202.30635076
  • Van Etten JL. Lesser Known Large dsDNA Viruses. Vol. 328. Springer Science & Business Media; 2008.
  • Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021;13(3):506. doi:10.3390/v1303050633803862
  • Iyer M, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts. Viruses. 2021;13(1):63. doi:10.3390/v1301006333466489
  • Buttimer C, Born Y, Lucid A, Loessner MJ, Fieseler L, Coffey A. Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. Res Microbiol. 2018;169(9):505–514. doi:10.1016/j.resmic.2018.04.00629777834
  • Brandes N, Linial M. Giant viruses—big surprises. Viruses. 2019;11(5):404. doi:10.3390/v11050404
  • Hendrix R. Jumbo bacteriophages. In: Lesser Known Large dsDNA Viruses. Springer; 2009:229–240.
  • Serwer P, Hayes SJ, Thomas JA, Hardies SC. Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J. 2007;4(1):1–5. doi:10.1186/1743-422X-4-2117204159
  • Van Etten JL, Lane LC, Dunigan DD. DNA viruses: the really big ones (giruses). Annu Rev Microbiol. 2010;64:83–99. doi:10.1146/annurev.micro.112408.13433820690825
  • Day A, Ahn J, Salmond GP. Jumbo bacteriophages are represented within an increasing diversity of environmental viruses infecting the emerging phytopathogen, Dickeya solani. Front Microbiol. 2018;9:2169. doi:10.3389/fmicb.2018.0216930258425
  • Lood C, Danis‐Wlodarczyk K, Blasdel BG, et al. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol. 2020;22(6):2165–2181. doi:10.1111/1462-2920.1497932154616
  • Devoto A, Santini J, Olm M, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol. 2019;4:693–700. doi:10.1038/s41564-018-0338-930692672
  • Drulis-Kawa Z, Olszak T, Danis K, Majkowska-Skrobek G, Ackermann H-W. A giant Pseudomonas phage from Poland. Arch Virol. 2014;159(3):567–572. doi:10.1007/s00705-013-1844-y24072472
  • Krylov V, Bourkaltseva M, Pleteneva E, et al. Phage phiKZ—the first of giants. Viruses. 2021;13(2):149. doi:10.3390/v1302014933498475
  • Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270(5235):397–404. doi:10.1126/science.270.5235.3977569993
  • Thomas JA, Hardies SC, Rolando M, et al. Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305ϕ8–36. Virology. 2007;368(2):405–421. doi:10.1016/j.virol.2007.06.04317673272
  • Ceyssens P-J, Minakhin L, Van den Bossche A, et al. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J Virol. 2014;88(18):10501–10510. doi:10.1128/JVI.01347-1424965474
  • Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-sequencing reveals the progression of phage-host interactions between φR1-37 and Yersinia enterocolitica. Viruses. 2016;8(4):111. doi:10.3390/v804011127110815
  • Gill JJ, Berry JD, Russell WK, et al. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage. BMC Genom. 2012;13(1):1–21. doi:10.1186/1471-2164-13-542
  • Mendoza SD, Nieweglowska ES, Govindarajan S, et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature. 2020;577(7789):244–248. doi:10.1038/s41586-019-1786-y31819262
  • Cornuault JK, Moineau S. A jumbo formation in the viral game plan. CRISPR J. 2020;3(1):14–17. doi:10.1089/crispr.2020.29082.jco32091252
  • Guan J, Bondy-Denomy J, Margolin W. Intracellular organization by jumbo bacteriophages. J Bacteriol. 2020;203(2):e00362–e00320. doi:10.1128/JB.00362-2032868402
  • Lee JY, Li Z, Miller ES, Henkin TM. Vibrio phage KVP40 encodes a functional NAD + salvage pathway. J Bacteriol. 2017;199(9):e00855–e00816. doi:10.1128/JB.00855-1628167526
  • Bertani B, Ruiz N, Slauch JM. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1). doi:10.1128/ecosalplus.ESP-0001-2018
  • Yoshikawa G, Askora A, Blanc-Mathieu R, et al. Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Sci Rep. 2018;8(1):1–10. doi:10.1038/s41598-018-22239-329311619
  • Kim JH, Son JS, Choi YJ, et al. Complete genome sequence and characterization of a broad-host range T4-like bacteriophage phiAS5 infecting Aeromonas salmonicida subsp. salmonicida. Vet Microbiol. 2012;157(1–2):164–171. doi:10.1016/j.vetmic.2011.12.01622226819
  • Enav H, Béja O, Mandel-Gutfreund Y. Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts. ISME J. 2012;6(3):619–628. doi:10.1038/ismej.2011.14622011720
  • Ahmad AA, Ogawa M, Kawasaki T, Fujie M, Yamada T. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri. Appl Environ Microbiol. 2014;80(1):77–85. doi:10.1128/AEM.02310-1324123743
  • Skurnik M, Hyytiäinen HJ, Happonen LJ, et al. Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37. J Virol. 2012;86(23):12625–12642. doi:10.1128/JVI.01783-1222973030
  • Kiljunen S, Hakala K, Pinta E, et al. Yersiniophage ϕR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology. 2005;151(12):4093–4102. doi:10.1099/mic.0.28265-016339954
  • Al-Shayeb B, Sachdeva R, Chen L-X, et al. Clades of huge phages from across Earth’s ecosystems. Nature. 2020;578(7795):425–431. doi:10.1038/s41586-020-2007-432051592
  • Mesyanzhinov VV, Robben J, Grymonprez B, et al. The genome of bacteriophage φKZ of Pseudomonas aeruginosa. J Mol Biol. 2002;317(1):1–19. doi:10.1006/jmbi.2001.539611916376
  • O’Donnell M, Langston B, Stillman B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol. 2013;5:a010108. doi:10.1101/cshperspect.a01010823818497
  • Mizuno CM, Guyomar C, Roux S, et al. Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat Commun. 2019;10(1):1–11. doi:10.1038/s41467-019-08672-630602773
  • Hertveldt K, Lavigne R, Pleteneva E, et al. Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol. 2005;354(3):536–545. doi:10.1016/j.jmb.2005.08.07516256135
  • Danilova YA, Belousova VV, Moiseenko AV, Vishnyakov IE, Yakunina MV, Sokolova OS. Maturation of pseudo-nucleus compartment in P. aeruginosa, infected with giant phiKZ phage. Viruses. 2020;12(10):1197. doi:10.3390/v12101197
  • Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res. 2015;43(21):10411–10420. doi:10.1093/nar/gkv109526490960
  • Lecoutere E, Ceyssens PJ, Miroshnikov KA, et al. Identification and comparative analysis of the structural proteomes of ϕKZ and EL, two giant Pseudomonas aeruginosa bacteriophages. Proteomics. 2009;9(11):3215–3219. doi:10.1002/pmic.20080072719526553
  • Thomas JA, Rolando MR, Carroll CA, et al. Characterization of Pseudomonas chlororaphis myovirus 201ϕ2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology. 2008;376(2):330–338. doi:10.1016/j.virol.2008.04.00418474389
  • Sokolova O, Shaburova O, Pechnikova E, et al. Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology. 2014;468:472–478. doi:10.1016/j.virol.2014.09.00225254945
  • Orekhova M, Koreshova A, Artamonova T, Khodorkovskii M, Yakunina M. The study of the phiKZ phage non-canonical non-virion RNA polymerase. Biochem Biophys Res Commun. 2019;511(4):759–764. doi:10.1016/j.bbrc.2019.02.13230833081
  • Sokolova ML, Misovetc I, Severinov V. Multisubunit RNA polymerases of jumbo bacteriophages. Viruses. 2020;12(10):1064. doi:10.3390/v12101064
  • Attai H, Boon M, Phillips K, Noben J-P, Lavigne R, Brown PJ. Larger than life: isolation and genomic characterization of a jumbo phage that infects the bacterial plant pathogen, Agrobacterium tumefaciens. Front Microbiol. 2018;9:1861. doi:10.3389/fmicb.2018.0186130154772
  • Kawato Y, Istiqomah I, Gaafar AY, et al. A novel jumbo Tenacibaculum maritimum lytic phage with head-fiber-like appendages. Arch Virol. 2020;165(2):303–311. doi:10.1007/s00705-019-04485-631786689
  • Lee Y, Son B, Cha Y, Ryu S. Characterization and genomic analysis of PALS2, a novel Staphylococcus jumbo bacteriophage. Front Microbiol. 2021;12:395. doi:10.3389/fmicb.2021.622755
  • Šimoliūnas E, Kaliniene L, Truncaitė L, et al. Klebsiella phage vB_KleM-RaK2—A giant singleton virus of the family Myoviridae. PLoS One. 2013;8(4):e60717. doi:10.1371/journal.pone.006071723593293
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–327. doi:10.1038/nrmicro231520348932
  • Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11(10):675–687. doi:10.1038/nrmicro309623979432
  • Malone LM, Warring SL, Jackson SA, et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol. 2020;5(1):48–55. doi:10.1038/s41564-019-0612-531819217
  • Goh S, Hussain H, Chang BJ, Emmett W, Riley TV, Mullany P. Phage ϕC2 mediates transduction of Tn 6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio. 2013;4(6):e00840–00813. doi:10.1128/mBio.00840-1324255122
  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232. doi:10.1016/j.chom.2019.01.01430763536
  • Imam M, Alrashid B, Patel F, et al. vB_PaeM_MIJ3, a novel jumbo phage infecting Pseudomonas aeruginosa, possesses unusual genomic features. Front Microbiol. 2019;10:2772. doi:10.3389/fmicb.2019.0277231849908
  • Wojtus JK, Frampton RA, Warring S, Hendrickson H, Fineran PC, Putonti C. Genome sequence of a jumbo bacteriophage that infects the kiwifruit phytopathogen Pseudomonas syringae pv. actinidiae. Microbiol Resource Announce. 2019;8(22):e00224–00219. doi:10.1128/MRA.00224-19
  • Nazir A, Dong Z, Liu J, et al. Sequence analysis of a jumbo bacteriophage, Xoo-sp14, that infects Xanthomonas oryzae pv. oryzae. Microbiol Resource Announce. 2020;9(48):e01072–01020. doi:10.1128/MRA.01072-20
  • Nazir A, Dong Z, Liu J, et al. Isolation, characterization, and genome sequence analysis of a novel lytic phage, Xoo-sp15 infecting Xanthomonas oryzae pv. oryzae. Curr Microbiol. 2021;78:1–9. doi:10.1007/s00284-020-02263-133112974
  • Burkal’tseva M, Krylov V, Pleteneva E, et al. Phenogenetic characterization of a group of giant φKZ-like bacteriophages of Pseudomonas aeruginosa. Russ J Genet. 2002;38(11):1242–1250. doi:10.1023/A:1021190826111
  • Krylov V, Cruz DD, Hertveldt K, Ackermann H-W. “φKZ-like viruses”, a proposed new genus of myovirus bacteriophages. Arch Virol. 2007;152(10):1955–1959. doi:10.1007/s00705-007-1037-717680323
  • Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J. 2010;7(1):1–19. doi:10.1186/1743-422X-7-29220044930
  • Miller ES, Heidelberg JF, Eisen JA, et al. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol. 2003;185(17):5220–5233. doi:10.1128/JB.185.17.5220-5233.200312923095
  • Hardies SC, Thomas JA, Serwer P. Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage. Virol J. 2007;4(1):1–17. doi:10.1186/1743-422X-4-9717204159
  • Iyer LM, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 2006;117(1):156–184. doi:10.1016/j.virusres.2006.01.00916494962
  • Forterre P, Gaïa M. Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol. 2016;31:44–49. doi:10.1016/j.mib.2016.02.00126894379
  • Netherton CL, Wileman T. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol. 2011;1(5):381–387. doi:10.1016/j.coviro.2011.09.00822440839
  • Kraemer JA, Erb ML, Waddling CA, et al. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell. 2012;149(7):1488–1499. doi:10.1016/j.cell.2012.04.03422726436
  • Muñoz-Espín D, Daniel R, Kawai Y, et al. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc Natl Acad Sci. 2009;106(32):13347–13352. doi:10.1073/pnas.090646510619654094
  • Legendre M, Bartoli J, Shmakova L, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci. 2014;111(11):4274–4279. doi:10.1073/pnas.132067011124591590
  • Selvarajan Sigamani S, Zhao H, Kamau YN, Baines JD, Tang L. The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J Virol. 2013;87(12):7140–7148. doi:10.1128/JVI.00311-1323596306
  • Rixon FJ, Schmid MF. Structural similarities in DNA packaging and delivery apparatuses in Herpesvirus and dsDNA bacteriophages. Curr Opin Virol. 2014;5:105–110. doi:10.1016/j.coviro.2014.02.00324747680
  • Koonin EV, Krupovic M, Yutin N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci. 2015;1341(1):10. doi:10.1111/nyas.1272825727355
  • Mutsafi Y, Fridmann-Sirkis Y, Milrot E, Hevroni L, Minsky A. Infection cycles of large DNA viruses: emerging themes and underlying questions. Virology. 2014;466:3–14. doi:10.1016/j.virol.2014.05.03724996494
  • Colson P, De Lamballerie X, Yutin N, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158(12):2517–2521. doi:10.1007/s00705-013-1768-623812617