141
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Comparison of Anti-Microbic and Anti-Biofilm Activity Among Tedizolid and Radezolid Against Linezolid-Resistant Enterococcus faecalis Isolates

, , , , , , & show all
Pages 4619-4627 | Published online: 05 Nov 2021

References

  • Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of enterococci. Microbiol Spectr. 2019;7. doi:10.1128/microbiolspec.GPP3-0053-2018
  • Kline KA, Lewis AL. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr. 2016;4. doi:10.1128/microbiolspec.UTI-0012-2012
  • Beganovic M, Luther MK, Rice LB, et al. A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clin Infect Dis. 2018;67:303–309. doi:10.1093/cid/ciy06429390132
  • Gilmore MS, Salamzade R, Selleck E, et al. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11. doi:10.1128/mBio.02962-20
  • Zurenko GE, Yagi BH, Schaadt RD, et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother. 1996;40:839–845. doi:10.1128/AAC.40.4.8398849237
  • Ippolito JA, Kanyo ZF, Wang D, et al. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem. 2008;51:3353–3356. doi:10.1021/jm800379d18494460
  • Aoki H, Ke L, Poppe SM, et al. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother. 2002;46:1080–1085. doi:10.1128/aac.46.4.1080-1085.200211897593
  • Wang J, Xia L, Wang R, et al. Linezolid and its immunomodulatory effect: in vitro and in vivo evidence. Front Pharmacol. 2019;10:1389. doi:10.3389/fphar.2019.0138931849655
  • Liu BG, Yuan XL, He DD, et al. Research progress on the oxazolidinone drug linezolid resistance. Eur Rev Med Pharmacol Sci. 2020;24:9274–9281. doi:10.26355/eurrev_202009_2300933015768
  • Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis. 2015;61:1315–1321. doi:10.1093/cid/civ50126105167
  • Shaw KJ, Poppe S, Schaadt R, et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother. 2008;52:4442–4447. doi:10.1128/AAC.00859-0818838596
  • Jiang J, Hou Y, Duan M, et al. Design, synthesis and antibacterial evaluation of novel oxazolidinone derivatives nitrogen-containing fused heterocyclic moiety. Bioorg Med Chem Lett. 2021;32:127660. doi:10.1016/j.bmcl.2020.12766033144245
  • Bassetti M, Righi E. Safety profiles of old and new antimicrobials for the treatment of MRSA infections. Expert Opin Drug Saf. 2016;15:467–481. doi:10.1517/14740338.2016.114252826764972
  • Carvalhaes CG, Sader HS, Flamm RK, et al. Assessment of tedizolid in vitro activity and resistance mechanisms against a collection of enterococcus spp. causing invasive infections, including isolates requiring an optimized dosing strategy for daptomycin from U.S. and European Medical Centers, 2016 to 2018. Antimicrob Agents Chemother. 2020;64. doi:10.1128/AAC.00175-20
  • Torres C, Alonso CA, Ruiz-Ripa L, et al. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol Spectr. 2018;6. doi:10.1128/microbiolspec.ARBA-0032-2018
  • Deshpande LM, Castanheira M, Flamm RK, et al. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother. 2018;73:2314–2322. doi:10.1093/jac/dky18829878213
  • Moure Z, Lara N, Marin M, et al. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes. Int J Antimicrob Agents. 2020;55:105977. doi:10.1016/j.ijantimicag.2020.10597732330583
  • Li P, Yang Y, Ding L, et al. Molecular investigations of linezolid resistance in enterococci OptrA variants from a hospital in Shanghai. Infect Drug Resist. 2020;13:2711–2716. doi:10.2147/IDR.S25149032801805
  • Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12:1221–1236. doi:10.1586/14787210.2014.95609225199988
  • Klupp EM, Both A, Belmar Campos C, et al. Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis. 2016;35:1957–1961. doi:10.1007/s10096-016-2747-027525679
  • Bai B, Hu K, Li H, et al. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing. FEMS Microbiol Lett. 2018;365. doi:10.1093/femsle/fnx284
  • Xu Z, Wei Y, Wang Y, et al. In vitro activity of radezolid against Enterococcus faecium and compared with linezolid. J Antibiot (Tokyo). 2020;73:845–851. doi:10.1038/s41429-020-0345-y32678335
  • Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45:999–1007. doi:10.1128/AAC.45.4.999-1007.200111257008
  • Bayston R, Ullas G, Ashraf W. Action of linezolid or vancomycin on biofilms in ventriculoperitoneal shunts in vitro. Antimicrob Agents Chemother. 2012;56:2842–2845. doi:10.1128/AAC.06326-1122430965
  • Holmberg A, Morgelin M, Rasmussen M. Effectiveness of ciprofloxacin or linezolid in combination with rifampicin against Enterococcus faecalis in biofilms. J Antimicrob Chemother. 2012;67:433–439. doi:10.1093/jac/dkr47722110086
  • Zheng J, Chen Z, Lin Z, et al. Radezolid is more effective than linezolid against planktonic cells and inhibits Enterococcus faecalis Biofilm Formation. Front Microbiol. 2020;11:196. doi:10.3389/fmicb.2020.0019632117185
  • Performance CLSI. Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • Patel SN, Memari N, Shahinas D, et al. Linezolid resistance in Enterococcus faecium isolated in Ontario, Canada. Diagn Microbiol Infect Dis. 2013;77:350–353. doi:10.1016/j.diagmicrobio.2013.08.01224095643
  • Ruiz-Ripa L, Fessler AT, Hanke D, et al. Mechanisms of linezolid resistance among enterococci of clinical origin in Spain-detection of optrA- and cfr(D)-carrying E. faecalis. Microorganisms. 2020;8:1155. doi:10.3390/microorganisms8081155
  • Huys G, D’Haene K, Collard JM, et al. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol. 2004;70:1555–1562. doi:10.1128/aem.70.3.1555-1562.200415006778
  • Zheng JX, Sun X, Lin ZW, et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J Med Microbiol. 2019;68:493–502. doi:10.1099/jmm.0.00094530882300
  • Mlynek KD, Callahan MT, Shimkevitch AV, et al. Effects of low-dose amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother. 2016;60:2639–2651. doi:10.1128/AAC.02070-1526856828
  • Koulenti D, Xu E, Song A, et al. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms. 2020;8:191. doi:10.3390/microorganisms8020191
  • Bai B, Hu K, Zeng J, et al. Linezolid consumption facilitates the development of linezolid resistance in Enterococcus faecalis in a tertiary-care hospital: a 5-Year Surveillance Study. Microb Drug Resist. 2019;25:791–798. doi:10.1089/mdr.2018.000530762463
  • Yan J, Xia Y, Yang M, et al. Quantitative proteomics analysis of membrane proteins in Enterococcus faecalis with low-level linezolid-resistance. Front Microbiol. 2018;9:1698. doi:10.3389/fmicb.2018.0169830100900
  • Cai J, Wang Y, Schwarz S, et al. Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010–2014. Clin Microbiol Infect. 2015;21:1095e1–4. doi:10.1016/j.cmi.2015.08.007
  • Guerin F, Sassi M, Dejoies L, et al. Molecular and functional analysis of the novel cfr(D) linezolid resistance gene identified in Enterococcus faecium. J Antimicrob Chemother. 2020;75:1699–1703. doi:10.1093/jac/dkaa12532277823
  • Shang Y, Li D, Shan X, et al. Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis. Infect Drug Resist. 2019;12:2355–2362. doi:10.2147/IDR.S20629531534352
  • Wang Y, Lv Y, Cai J, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70:2182–2190. doi:10.1093/jac/dkv11625977397
  • Zou J, Tang Z, Yan J, et al. Dissemination of linezolid resistance through sex pheromone plasmid transfer in Enterococcus faecalis. Front Microbiol. 2020;11:1185. doi:10.3389/fmicb.2020.0118532582110
  • Gonzales RD, Schreckenberger PC, Graham MB, et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet. 2001;357:1179. doi:10.1016/S0140-6736(00)04376-211323048
  • Nostro A, Roccaro AS, Bisignano G, et al. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007;56:519–523. doi:10.1099/jmm.0.46804-017374894
  • Tong J, Jiang Y, Xu H, et al. In vitro antimicrobial activity of fosfomycin, rifampin, vancomycin, daptomycin alone and in combination against vancomycin-resistant enterococci. Drug Des Devel Ther. 2021;15:3049–3055. doi:10.2147/DDDT.S315061
  • Luther MK, Arvanitis M, Mylonakis E, et al. Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother. 2014;58:4612–4620. doi:10.1128/AAC.02790-1324867993
  • Xiao B, Zou Z, Bhandari J, et al. Exposure to diode laser (810nm) affects the bacterial adherence and biofilm formation in a E. faecalis biofilm model. Photodiagnosis Photodyn Ther. 2020;31:101772. doi:10.1016/j.pdpdt.2020.10177232485401
  • Schumacher A, Trittler R, Bohnert JA, et al. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother. 2007;59:1261–1264. doi:10.1093/jac/dkl38016971414